	GOVERNMENT ARTS AND SCIENCE COLLEG, KOVILPATTI - $\mathbf{6 2 8} 503$. (AFFILIATED TO MANONMANIAM SUNDARANAR UNIVERSITY, TIRUNELVELI) DEPARTMENT OF MATHEMATICS STUDY E - MATERIAL CLASS : I M.SC (MATHEMATICS) SUBJECT : ORDINARY DIFFERENTIAL EQUATIONS(PMAM15)

1.4 Paper 4: ORDINARY DIFFERENTIAL EQUATIONS

Text Book: Differential Equations with application and historical notes, G.F. Simmons, Second Edition, Tata McGraw Hill.

Unit I: Second Order linear equations : General solution of the Homogeneous equations - The use of a known solution to find another - The method of variation of parameters.
Sections: 14-16.
Unit II: Power series solutions: A review of power series solutions - Series solution of first order equations - Second order equations - Ordinary points.
Sections: 26-28.
Unit III: Regular singular points - Legendre polynomials- Properties of Legendre polynomials
Sections: 29, 30, 44, 45 .
Unit IV: Bessel functions - The Gamma functions - Properties of Bessel functions. Sections: 46, 47.

Unit V: Linear systems : Homogeneous linear systems with constant coefficients Sections: 55, 56 .

ORDINARY DIFFERENTIAL
EQUATIONS

Unit -I

General solution of the homogenous equation - the use of a known solution to find another. The method of variation of Parameters.

Section: $14-16$
Unit - II

Power Series Solution: A review of Power series solution of first order equations - second order equationsordinary points.

Section: $26-28$
Unit - III
Regular singular points - Legendre polynomial - Properties of legendre polynomial section :-29, 30,44,45

Unit - IV
Bassel function The Gamma function - Properties of Based function Section: Lib,47

Unif-V
linear System: Homogenous linear systems with constant coefficient

Section :55,56
Text book:
Differential equations with
application and historical notes by G.F. Simmons.
(2) 7119

UNITE

First order differential equations:-

$$
\frac{d y}{d x}+p(x) y=\theta(x) \quad \text { where }
$$

$P(x)$ and $Q(x)$ are functions of x general solution first order differential equation.

$$
y e^{\int p d x}=\int \otimes e^{\int \Gamma d x} d x+c
$$

where c is a constant.
second order differential equation:-

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}+R(x) \frac{d y}{d x}+Q(x) y=R(x) \tag{1}
\end{equation*}
$$

where $P(x), Q(x)$ and $R(x)$ are functions of x

Note:
If $\mathbb{R}(x)=0$, then the equation
(a) is said to be homoqenous second order differential equation If $R(x) \neq 0$, then the equation (1) is said to be non-homogeneous second order differential equation

Formation of an differen tial equation by eliminating C_{1} and C_{2} :-
(11) $y=c_{1} x+c_{2} x^{2}$
differenciate (i) w,r to x

$$
\begin{equation*}
\frac{d y}{d x}=c_{1}+2 c_{2} x \tag{-2}
\end{equation*}
$$

Diff (2) w.r.to x

$$
\begin{aligned}
& \frac{d^{2} y}{d x^{2}} \\
&=2 c_{2} \\
& \therefore \quad c_{2}=\frac{1}{2} \frac{d^{2} y}{d x^{2}}=\frac{y^{11}}{2}
\end{aligned}
$$

(2)

$$
\begin{aligned}
\Rightarrow y^{\prime} & =c_{1}+4^{\prime \prime}(x) \\
\therefore c_{1} & =y^{\prime}-4^{\prime \prime} x
\end{aligned}
$$

(1)

$$
\begin{aligned}
& \Rightarrow y=\left(y^{\prime}-y^{\prime \prime} x\right) x+\frac{1}{2} y^{\prime \prime} x^{2} \\
& y=y^{\prime} x-y^{\prime \prime} x^{2}+\frac{1}{2} y^{\prime \prime} x^{2} \\
& y=x y^{\prime}-x^{2} y^{\prime \prime}+\frac{1}{2} x^{2} y^{\prime \prime} \\
& y=x y^{\prime}-\frac{1}{2} x^{2} y^{\prime \prime} \\
& 2 y=2 x y^{\prime}-x^{2} y^{\prime \prime} \\
& 2 x y^{\prime}+2 y=0
\end{aligned}
$$

(2) $y=c_{1} e^{k x}+c_{2} e^{-k x}$ (0)

Diff (4) w.r.to x

$$
\begin{equation*}
4^{\prime}=c_{1} e^{k x} k+c_{2} e^{-k x}(-k) \tag{2}
\end{equation*}
$$

Diff (2) w, v, to x

$$
\begin{aligned}
& y^{\prime \prime}=c_{1} e^{k x} k^{2}+c_{2} e^{-k x}\left(k^{2}\right) \\
& 4^{\prime \prime}=k^{2}\left(c_{1} e^{k x}+c_{2} e^{-k x}\right) \\
& 4^{\prime \prime}=k^{2} y \quad(\therefore b y \text { eqn }(1)) \\
& \therefore y^{\prime \prime}-k^{2} y=0
\end{aligned}
$$

(3) $y=c_{1} \sin k x+c_{2} \cos k x$

Soln:

$$
y=c_{1} \sin k x+c_{2} \cos k x
$$

Diff (a) w. r.to x

$$
\begin{equation*}
y^{\prime}=c_{1} \cos k x \cdot k-c_{2} \sin k x-k \text {. } \tag{2}
\end{equation*}
$$

Diff (2) $\omega+r$ to x

$$
\begin{aligned}
y^{\prime \prime}= & -c_{1} \sin k x k^{2}-c_{2} \cos k x k^{2} \\
& =-k^{2}\left[c_{1} \sin k x+c_{2} \cos k x\right] \\
y^{\prime \prime} & =-k^{2} y \\
\therefore y^{\prime \prime} & +k^{2} y=0
\end{aligned}
$$

(4).

$$
y=c_{1}+c_{2} e^{-2 x}
$$

Soln:

$$
\begin{equation*}
y=c_{1}+c_{2} e^{-2 x} \tag{3}
\end{equation*}
$$

Diff (1) w-r.to x

$$
\begin{equation*}
4^{\prime}=c_{2} e^{-2 x}(-2) \tag{2}
\end{equation*}
$$

Diff (2) w.r.to x

$$
\begin{equation*}
4^{\prime \prime}=c_{2} e^{-2 x} 4 \tag{3}
\end{equation*}
$$

From (2) and (3), we get

$$
\begin{aligned}
y^{\prime \prime} & =2\left(2 c_{2} e^{-2 x}\right) \\
& =2\left(-y^{\prime}\right) \\
y^{\prime \prime}+2 y^{\prime} & =0
\end{aligned}
$$

(5). $y=c_{1} x+c_{2} \sin x$

Soln:

$$
\begin{equation*}
y=c_{1} x+c_{2} \sin x \tag{a}
\end{equation*}
$$

Diff (1) w.r. to x

$$
\begin{equation*}
y^{\prime}=c_{1}+c_{2} \cos x \tag{2}
\end{equation*}
$$

Diff (2) w.r.to x

$$
4^{\prime \prime}=-c_{2} \sin x
$$

$$
\therefore \quad c_{2}=-\frac{4^{\prime \prime}}{\sin x}
$$

(2)

$$
\begin{aligned}
\Rightarrow y^{\prime} & =c_{1}-\left(\frac{4^{\prime \prime}}{\sin x}\right) \cos x \\
4^{\prime} & =c_{1}-\cot x u^{\prime \prime} \\
c_{1} & =y^{\prime}+\cot x 4^{\prime \prime}
\end{aligned}
$$

(c)

$$
\begin{gathered}
\Rightarrow \quad y=\left(y^{\prime}+\cot x y^{\prime \prime}\right) x-\left(\frac{y^{\prime \prime}}{\sin x}\right) \sin x \\
y^{\prime \prime}=x y^{\prime}+x \cot x y^{\prime \prime}-y^{\prime \prime} \\
y^{\prime \prime}-x \cot x y^{\prime \prime}-x y^{\prime}+y=0 \\
(1-x \cot x) y^{\prime \prime}-x y^{\prime}+y=0
\end{gathered}
$$

(6) $y=c_{1} e^{x}+c_{2} e^{-3 x}$
soln:

$$
\begin{equation*}
y=c_{1} e^{x}+c_{2} e^{-3 x} \tag{1}
\end{equation*}
$$

Diff (1) $w_{1} r$. to x

$$
\begin{equation*}
4^{\prime}=c_{1} e^{x}+c_{2} e^{-3 x}(-3) \tag{2}
\end{equation*}
$$

Diff (2) w,r. to x

$$
\begin{equation*}
4^{\prime \prime}=c_{1} e^{x}+c_{2} e^{-3 x_{1}} \cdot c_{1} \tag{3}
\end{equation*}
$$

(3) -(2) $\Rightarrow 4^{\prime \prime}-4^{\prime}=12 c_{2} e^{-3 x}$

$$
\therefore C_{2}=\frac{4^{\prime \prime}-4^{\prime}}{12 e^{-3 x}}
$$

(3)

$$
\begin{aligned}
& \Rightarrow \quad y^{\prime}=c_{1} e^{x}-3\left(\frac{y^{\prime \prime}-y^{\prime}}{12 e^{-3 x}}\right) e^{-3 x} \\
& 4_{1} \\
& \therefore \quad y^{\prime}=c_{1} e^{x}-\frac{1}{4}\left(4^{\prime \prime}-4^{\prime}\right) \\
& \therefore \quad c_{1}=\frac{y^{\prime}+\frac{1}{4}\left(y^{\prime \prime}-4^{\prime}\right)}{e^{x}}
\end{aligned}
$$

(1) \Rightarrow

$$
\begin{aligned}
& y=\frac{\left(y^{\prime}+\frac{4^{\prime \prime}}{4}-\frac{y^{\prime}}{4}\right)}{e^{x}}+\left(\frac{4^{\prime \prime}-y^{\prime}}{12 e^{-3 x}}\right) e^{-3 x} \\
& =4^{\prime}+\frac{y^{\prime \prime}}{4}-\frac{y^{\prime}}{4}+\frac{4^{\prime \prime}-y^{\prime}}{12} \\
& 12 y=12 y^{\prime}+3 y^{\prime \prime}-3 y^{\prime}+4^{\prime \prime}-y^{\prime} \\
& 44^{\prime \prime}-9 \\
& 12 y=4 y^{\prime \prime}+8 y^{\prime} \\
& 4 y^{\prime \prime}+8 y^{\prime}-12 y=0 \\
& y^{\prime \prime}+2 y^{\prime}-3 y=0,
\end{aligned}
$$

157719
Theorem: (A) (uniqueness theorem)
Let $P(x), Q(x)$ and $R(x)$ be continuous functions on a closed interval $[a, b]$. If x_{0} is, any point in the interval $[a, b]$, and if y_{0} and y_{0}^{\prime} are any numbers whatever, then the second ovaler differential equation

$$
\frac{d^{2} y}{d x^{2}}+p(x) \frac{d y}{d x}+2(x) y=R(x)
$$

has one and only one solution $y(x)$ in the extine closed, interval [a,b] such that $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$

Problem.
(1) Find the solution of the initial value problem $y^{\prime \prime}+y=0$,

$$
\begin{array}{ll}
y(0)=0 & \text { and } y^{\prime}(0)=1 \\
\text { sols: } & y^{\prime \prime}+y=0
\end{array}
$$

we know that, $y=\sin x$ $y=\cos x$ and $y=c_{1} \sin x+c_{2} \cos x$ are all the solutions of (1) ((2))

$$
\begin{aligned}
y(0) & =c_{1} \sin (0)+c_{2} \cos (0) \\
0 & =0+c_{2} \\
\therefore c_{2} & =0 \\
y^{\prime} & =c_{1} \cos x-c_{2} \sin x \\
y^{\prime}(0) & =c_{1} \cos x-c_{2} \sin x \\
y^{\prime}(0) & =c_{1} \cos (0)-c_{2} \sin (0) \\
1 & =c_{1}-0 \\
\therefore c_{1} & =1
\end{aligned}
$$

\therefore (2) becomes

$$
\begin{aligned}
& y=1 \cdot \sin x+(0) \cos x \\
& y=\sin x
\end{aligned}
$$

$\therefore y=\sin x$ is the only solution of the second ovaler differential equation $y^{\prime \prime}+y=0$
(2). Find the Solutions of the initial value Problem $y^{\prime \prime}+y=0$, $y(0)=1$ and $y^{\prime}(0)=0$.

Soln.

$$
\begin{equation*}
y^{\prime \prime}+y=0 \tag{a}
\end{equation*}
$$

we know that $y=\sin x$, $y=\cos x$ and $y=c_{1} \cdot \sin x+c_{2} \cos x$ are all the solutions of (1) (2)

$$
\begin{aligned}
y(0) & =c_{1} \sin (0)+c_{2} \cos (0) \\
1 & =0+c_{2} \\
\boxed{-c} & =1 \\
y^{\prime} & =c_{1} \cos x-c_{2} \sin x \\
y^{\prime}(0) & =c_{1} \cos (0)-c_{2} \sin (0) \\
0 & =c_{1}-0 \\
\therefore c_{1} & =0
\end{aligned}
$$

\therefore (2) becomes

$$
\begin{aligned}
& y=0 \cdot \sin x+(1) \cos x \\
& y=\cos x
\end{aligned}
$$

$\therefore y=\cos x$ is the only solutions of the second order differential equation.

Note:

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}+R(x) \frac{d y}{d x}+\partial(x) y=R(x) \tag{1}
\end{equation*}
$$

Now it is reduced to

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}+p(x) \frac{d y}{d x}+\partial(x) y=0 \tag{2}
\end{equation*}
$$

The eqn (1) is called the complete equation and (5) is called the reduced equation associated wixitorn it

Theorem: (3)
If y_{g} is the general sold of $\quad y^{\prime \prime}+P(x) y_{1}^{\prime}+Q(x) y=0 \quad$ and y_{p} is any particular solution of $y^{\prime \prime}+p(x) y^{\prime}+R(x) y=R(x)$. then $y_{g}+y_{p}$ is the general solution of $\quad y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=R(x)$.

Proof: Consider,

$$
\begin{align*}
& 4^{\prime \prime}+P(x) y^{\prime}+Q(x) y=R(x) \text { (a) and } \\
& y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0 \tag{2}
\end{align*}
$$

Given Y_{g} in soln of (2)

$$
\begin{equation*}
y^{\prime \prime} g+p(x) y_{9}^{\prime}+Q(x) y_{y}=0 \tag{3}
\end{equation*}
$$

Also given y_{p} is solution of (11)

$$
\begin{equation*}
y_{p}^{\prime \prime}+p(x) y_{p}^{\prime}+Q(x) y_{p}=R(x) \tag{4}
\end{equation*}
$$

daim.
$y_{g}+y_{p}$ in a soln of (1)

$$
\begin{aligned}
(i-2)\left(y_{g}+y_{p}\right)^{\prime \prime}+p(x)\left(y_{g}+y_{p}\right)^{\prime} & +Q(x)\left(y_{g}+y_{p}\right) \\
& =R(x)
\end{aligned}
$$

consider,

$$
\begin{aligned}
&\left(y_{q}+y_{p}\right)^{\prime \prime}+p(x)\left(y_{g}+y_{p}\right)+Q(x)\left(y_{q}+y_{p}\right) \\
&= y_{g}{ }^{\prime \prime}+y_{p}^{\prime \prime}+p(x) y_{q}{ }^{\prime}+p(x) y_{p}^{\prime} \\
&+a(x) y_{q}{ }^{\prime}+Q(x) y_{p} \\
&=\left(y_{q}{ }^{\prime \prime}+p(x) y_{q}{ }^{\prime}+Q(x) y_{q}\right)+ \\
&\left(y_{p}^{\prime \prime}+p(x) y_{p}^{\prime}+Q(x) y_{p}\right) \\
&= 0+R(x)(\text { by (3) and (d) }) \\
&= R(x)
\end{aligned}
$$

$\therefore y_{g}+y_{p}$ in a solution of (1)

Theorem: (C) (linear continuation)

If $y_{1}(x)$ and $y_{2}(x)$ are two solutions of $y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0$ then, $c_{1} y_{1}(x)+c_{2} y_{2}(x)$ is also a Solution $y^{\prime \prime}+D(x) y^{\prime}+Q(x) y=0$, for any constants C_{1} and C_{2}

Proof-

$$
\begin{equation*}
y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0 \tag{i}
\end{equation*}
$$

Since, " $y_{1}(x)$ is a solution of (1)

$$
\begin{equation*}
y_{1}^{\prime \prime}+p(x) y_{1}^{\prime}+2(x) y_{1}=0 \tag{2}
\end{equation*}
$$

Since, $y_{2}(x)$ is a solution of (1),

$$
\begin{equation*}
y_{2}^{\prime \prime}+p(x) y_{2}^{\prime}+\theta(x) y_{2}=0 \tag{3}
\end{equation*}
$$

claim.

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x) \text { is a }
$$

Solution of (1).
consider,

$$
\begin{aligned}
& \left(c_{1} y_{1}+c_{2} y_{2}\right)^{\prime \prime}+e\left(c_{1}\right)\left(c_{1} y_{1}+c_{2} y_{2}\right)^{\prime} \\
& \quad+Q(x)\left(c_{1} y_{1}+c_{2} y_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
= & c_{1} y_{1}^{\prime \prime}+c_{2} y_{2}^{\prime \prime}+D(x) c_{1} y_{1}^{\prime}+D(x) c_{2} y_{2}^{\prime \prime} \\
& +Q(x) c_{1} y_{1}+Q(x) c_{2} y_{2} \\
= & c_{1}\left(y_{1}{ }^{\prime \prime}+P(x) y_{1}+Q(x) y_{1}\right)+ \\
& c_{2}\left(y_{2}^{\prime \prime}+P(x) y_{2}+Q(x) y_{2}\right) \\
= & 0+0=0
\end{aligned}
$$

Hence $c_{1} y_{1}+c_{2} y_{2}$ is also a Solution of (Ii).

Note:
The above theorem can be restated as any linear condonation of two solutions of homogeneous equation is also a solution of the homogenous equation.

Def:
Two functions $f(x)$ and $g(x)$ defined on the interval $[a, b]$ are said to be linearly dependent if one is constant multiple of other... other wise they ane linearly independent.
$1 6 \longdiv { 7 1 9 }$
Note:
If one of the function is identically zero, then they ane linearly independent.

Defn: (wronskian)

$$
\text { Cor } 20^{20}
$$

wronskian of y_{1} and $y_{2}=\omega\left(y_{1}, y_{2}\right)$

$$
=\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|
$$

Theorem:
Let $y_{1}(x)$ and $y_{2}(x)$ be linearly independent solutions of the homogeneous equation

$$
\begin{equation*}
y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0 \tag{1}
\end{equation*}
$$

on the interval $[a, b]$, Then

$$
\begin{equation*}
c_{1} y_{1}(x)+c_{2} y_{2}(x) \tag{2}
\end{equation*}
$$

is the general solution of (1) on $[a, b]$ in the sense that. every solution of (1) on this interval can be obtained from (2) by

Suitable choice of one arbitary constants C_{1} and C_{2}.

First we need to prove the following Lemmas.
(*) Lemma: (i)
(a) If y_{1} and y_{2} are any two 3^{5} Solutions of (1) on $[a, b]$ then their wronskian $\omega=\omega\left(y_{1}, y_{2}\right)$ is either identically zero or never $0 \frac{\text { zero }}{}$ on $[a, b]$
SProut:

$$
\begin{aligned}
w\left(y_{1}, y_{2}\right) & =\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right| \\
& =y_{1} y_{2}^{\prime}-y_{2} y_{1}^{\prime} \\
w^{\prime} & =y_{1} y_{2}^{\prime \prime}+y_{2}^{\prime} y_{1}^{\prime}-y_{2} y_{1}^{\prime \prime}-y_{1}^{\prime} y_{2}^{\prime} \\
& =y_{1} y_{2}^{\prime \prime}-y_{2}^{\prime} y_{1}^{\prime \prime}
\end{aligned}
$$

Since y_{1} and y_{2} are solutions of (1) ,

$$
\begin{equation*}
y_{1}^{\prime \prime}+P(x) y_{1}^{\prime}+Q(x) y_{1}=0 \tag{3}
\end{equation*}
$$

(B) $x y_{2} ; \quad y_{1}^{\prime \prime} y_{2}+D(x) y_{1}^{\prime} y_{2}+Q(x) y_{1} y_{2}=0$
(10) $\times y_{1} ; \quad y_{1} y_{2}^{\prime \prime}+P(x) y_{2}^{\prime} y_{1}+Q(x) y_{2} y_{1}=0.16$
(5) - (6)

$$
\begin{aligned}
& y_{1}^{\prime \prime} y_{2}^{\prime}-y_{1} y_{2}^{\prime \prime}+\left(y_{1}^{\prime} y_{2}-y_{1} y_{2}^{\prime}\right) p\left(x^{\prime}\right)=0 \\
&-w^{\prime}-w p(x)=0 \\
& \Rightarrow w^{\prime}=-w p(x) \\
& \Rightarrow \frac{d w}{d x}=-p(x) \omega \\
& \Rightarrow \frac{d \omega}{w}=-p(x) d x \\
& \Rightarrow \int \frac{d w}{w}=\int-p(x) d x \\
& \Rightarrow \log =\frac{w^{\prime}}{d x}=-\int p(x) d x+c \\
& \Rightarrow=e^{\prime}=-\int p(x) d x+c \\
& \Rightarrow=e^{-\int p(x) d x} e^{c} \\
& \Rightarrow=k \cdot e^{-\int p(x) d x}
\end{aligned}
$$

where, $k=e^{c}$

Since the exponential factor is never zero, if the constant $k=0$, then ω is zero,
if the constant $k \neq 0$, then ω is never zero.

Lemma: (2)
If $y_{1}(x)$ and $y_{2}(x)$ are two solutions of equation (1) on $[a, b]$, then they are linearly dependent on this interval iff the wronskian of y_{1} and y_{2} is identically zero.
Proof=
Assume that 4_{1} and y_{2} are linearly dependent

$$
\text { Now } \begin{aligned}
w\left(y_{1}, y_{2}\right) & =\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1} & y_{2}^{\prime}
\end{array}\right| \\
& =y_{1} y_{2}^{\prime}-y_{2} y_{1}^{\prime}
\end{aligned}
$$

If either function $y_{\text {, }}$ है and y_{2} are identically zero, then the conclusion is clear. W.L.G. Assume that neither is identically zero
since y_{1} and u_{2} are linearly independent,

$$
\begin{align*}
& y_{2}=k y_{1} \tag{1}\\
& y_{2}^{\prime}=k y_{1}^{\prime} \tag{2}\\
& \text { (6) } \Rightarrow \frac{y_{2}^{\prime}}{y_{2} b}=\frac{k y_{1}{ }^{\prime}}{k y_{1}} \\
& y_{1} y_{2}^{\prime}=y_{1}^{\prime} y_{2} \\
& \Rightarrow \quad y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}=0 \\
& \Rightarrow \quad \omega=0
\end{align*}
$$

on $[a, b]$, then the functions are linearly dependent
\therefore We assume that y_{1} does not Vansih identically on $[a, b]$

Now, $w=0$

$$
\begin{aligned}
& \Rightarrow \quad \frac{y_{1} y_{2}}{\prime}-y_{1}^{\prime} y_{2}=0 \\
& \Rightarrow \quad y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2} \\
& y_{1}{ }^{2}
\end{aligned}=0
$$

$$
\Rightarrow \quad \frac{y_{2}}{y_{1}}=k_{1} \text { where } k \text { is constant }
$$

$$
\Rightarrow \quad y_{2}=k y_{1}
$$

$\therefore 4_{1}$ and is $_{2}$ are linearly dependent

Proof of the main theorem:-
Let $y(x)$ be any solution of
(c) on $[a, b]$.
we must show that one can find constants c_{1} and C_{2} such that

$$
y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x) \text { on }\left\{a_{1}, b\right\}
$$

By existence and uniqueness theorem it is enough to show that for any point $x_{0} \in[a, b]$, we can find c_{1} and c_{2} such that

$$
\begin{aligned}
& c_{1} y_{1}\left(x_{0}\right)+c_{2} y_{2}\left(x_{0}\right)=y\left(x_{0}\right) \text { and } \\
& c_{1} y_{1}^{\prime}\left(x_{0}\right)+c_{2} y_{2}^{\prime}\left(x_{0}\right)=y^{\prime}\left(x_{0}\right)
\end{aligned}
$$

For this system to be solvable for c_{1} and c_{2}, it suffices that

$$
\left|\begin{array}{ll}
y_{1}\left(x_{0}\right) & y_{0}\left(x_{0}\right) \\
y_{1}^{\prime}\left(x_{0}\right) & y_{2}^{\prime}\left(x_{0}\right)
\end{array}\right|=y_{1}\left(x_{0}\right) u_{2}^{\prime}\left(x_{0}\right)-1 ~\left(y_{2}\left(x_{0}\right) y_{1}^{\prime}\left(x_{0}\right)\right.
$$

have a value different from zero
ie) By lemma, there exists x_{0} in $[a, b]$
such that $y_{1}\left(x_{0}\right) y_{2}^{\prime}\left(x_{0}\right)-y_{2}\left(n_{0}\right) y_{1}^{\prime}\left(x_{0}\right)$ is hon - zero

Hence the proof

Problem
(1)(0) Show that $y=c_{1} \sin x+c_{2} \cos x$ in (b) general solution $y^{\prime \prime}+y=0$ on any interval. Find particular Solutions for which $y(0)=2$ and $u^{\prime}(\theta)=3$.

Sol:
Given, $y^{\prime \prime}+y=0$
Let $y_{1}=\sin x$

$$
4_{i}=\cos x \text { and } 4_{1}^{\prime \prime}=-\sin x
$$

(a) $\Rightarrow y_{1}{ }^{\prime \prime}+y=-\sin x+\sin x=0$

Hence $y_{1}=\sin x$ is the Solution of (11)

Let $y_{2}=\cos x$

$$
y_{2}^{\prime}=-\sin x \text { and } y_{2}^{\prime \prime}=-\cos x
$$

(1) $\Rightarrow 4 x^{\prime \prime}+y=\cos x-\cos x=0$

Hence $y_{2}=\cos x$ is a sole of (1)

$$
\begin{aligned}
w\left(y_{1}, y_{2}\right) & =\left|\begin{array}{ll}
u_{1} & u_{2} \\
u_{1} & y_{2}^{\prime}
\end{array}\right| \\
& =\left|\begin{array}{cc}
\sin x & \cos x \\
\cos x & -\sin x
\end{array}\right| \\
& =-\sin ^{2} x-\cos ^{2} x \\
& =-\left(\cos x+\sin ^{2} x\right) \\
& =-1 \neq 0 .
\end{aligned}
$$

Hence y_{1} and y_{2} are linearly independent.

Comparing eqn (1) with the generally equation, $y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0$, we quot $P(x)=0$ and $Q(x)=1$

Hence $T(x)$ and $Q(x)$ are constant functions.
$\therefore T(x)$ and $Q(x)$ ane continuous functions
\therefore By the,
$y=c_{1} \sin x+c_{2} \cos x$ is the qeneral solution of (1)

$$
y=c_{1} \sin x+c_{2} \cos x
$$

$$
\begin{aligned}
y(0) & =c_{1} \sin 0+c_{2} \cos 0 \\
2 & =0+c_{2} \\
\therefore c_{2} & =2 \\
y_{1}^{\prime} & =c_{1} \cos x-c_{2} \sin x \\
4(0) & =c_{1} \cos \theta-c_{2} \sin 0 \\
3 & =c_{1}-0 \\
\therefore c_{1} & =3
\end{aligned}
$$

\therefore Particular soln is

$$
y=3 \sin x+2 \cos x
$$

(2) Show that e^{x} and e^{-x} are linearly inalependent soon of $y^{\prime \prime}-y=0$ on any interval.
Soln:
Given $y^{\prime \prime}-y=0$
tet $\quad y_{1}=e^{x} ; y_{2}=e^{-x}$
y_{1} is the solution of equation (1)
$y_{1}^{\prime}=e^{x}$ and $y_{1}^{\prime \prime}=e^{x}$

$$
\text { (6) }=5 \quad e^{x}-e^{x}=0
$$

Hence 4 , is the sols of the equation.

$$
\text { (1) } \Rightarrow y_{2}=e^{-x} ; \quad y_{2}^{\prime}=-e^{-x}
$$

and $y_{2}^{\prime \prime}=e^{-x}$

$$
\text { (4) } \Rightarrow e^{-x}-e^{-x}=0
$$

Hence y_{2} is the solution of the equation (1)

To Prove y_{1} and y_{2} are linearly independent

It is enough to prove that

$$
\begin{aligned}
& \omega\left(y_{1}, y_{2}\right) \neq 0 \\
& \omega\left(y_{1}, y_{2}\right)=\omega\left(e^{x}, e^{-x}\right)=\left|\begin{array}{cc}
e^{x} & e^{-x} \\
e^{x} & -e^{-x}
\end{array}\right| \\
&=-e^{x} e^{-x}-e^{x} e^{-x} \\
&=-2 e^{x} e^{-x} \\
&=-2 e^{0}
\end{aligned}
$$

$$
\omega\left(y_{1}, y_{2}\right)=-2 \neq 0 .
$$

Hence y_{1} and y_{2} are linearly independent sold of the equation (4) on any interval.
(3) Show that $y_{1}=c_{1} x+c_{2} x^{2}$ is the general solution of $x^{2} y^{\prime \prime}-2 x y^{\prime}+2 y=0$ on any interval not containing zero and find the Particular solution for $y(1)=3$ and $y^{\prime}(1)=5$

Sorn:
Given $x^{2} y^{\prime \prime}-2 x y^{\prime}+2 y=0$ (i)
let $y_{1}=x$ and $y_{2}=x^{2}$ $y^{\prime}=1$ and $y^{\prime \prime}=0$
(a) $\Rightarrow x^{2}(0)-2 x(1)+2 x=0$

Hence $y_{1}=x$ is the soln eqn (0)
let $y_{2}=x^{2}$
$y_{2}=2 x$ and $y_{2}^{\prime \prime}=2$

$$
\text { (a) } \begin{aligned}
\Rightarrow & =x^{2}(2)-2(x)(2 x)+2\left(x^{2}\right) \\
& \Rightarrow 2 x^{2}-4 x^{2}+2 x^{2}=0
\end{aligned}
$$

$$
\Rightarrow 4 x^{2}-4 x^{2}=0
$$

Hence $y_{2}=x^{2}$ is the soln of (1)

$$
\begin{aligned}
\omega\left(y_{1}, y_{2}\right) & =\left|\begin{array}{ll}
x & x^{2} \\
1 & 2 x
\end{array}\right| \\
& =2 x^{2}-x^{2} \\
& =x^{2} \neq 0
\end{aligned}
$$

Hence y_{1} and y_{2} are linearly independent.

Comparing the eqn (1) with the general equation
$y^{\prime \prime}+P(x) y^{\prime}+Q(x) y^{\prime}=0$, we qed

$$
P(x)=\frac{-2 x}{x^{2}}=2 x \text { and } Q(x)=\frac{2}{x^{2}}
$$

Hence, $P(x)$ and $Q(x)$ are function of x also polynomial function are continuous

By theorem
$y=c_{1} x+c_{2} x^{2}$ is the general
Solution of equ (0)

$$
\begin{align*}
y(1) & =c_{1}(1)+c_{2}\left(c_{1}\right) \\
3 & =c_{1}+c_{2} \tag{5}\\
y^{\prime} & =c_{1}+2 c_{2} \\
y^{\prime}(1) & =c_{1}+2 c_{2} \\
5 & =c_{1}+2 c_{2} \tag{3}
\end{align*}
$$

(3) - (2) $\quad c_{2}=2$
(2)

$$
\begin{array}{r}
\Rightarrow \quad c_{1}+c_{2}=3 \\
c_{1}+2=3 \\
c_{1}=1
\end{array}
$$

$y=x+2 x^{2}$ is a Particular theorem

Show that $y=c_{1} e^{x}+c_{2} e^{2 x}$ is the general soln of $y^{\prime \prime}-3 y^{\prime}+2 y=0$ on any interval find the Particular Sols for which $y(v)=-1$ and $4^{\prime}(0)=1$.
Soln:-
Given $\quad y^{\prime \prime}-3 y^{\prime}+2 y=0$
Let $y=c_{1} e^{x}+c_{2} e^{2 x}$
and let

$$
y_{2}=e^{2 x}
$$

$$
\begin{aligned}
& y_{1}=e^{x} \\
& y_{1}^{\prime}=e^{x} \\
& y_{*}^{\prime \prime}=e^{x}
\end{aligned}
$$

$$
y_{2}^{\prime}=2 e^{2 x}
$$

(6)

$$
\Rightarrow y_{1}^{\prime \prime}-3 y_{1}^{\prime}+2 y_{1}=e^{x}-3 e^{x}+2 e^{x}
$$

$y_{1}=e^{x}$ is a solution of eqn (I)
(4)

$$
\begin{aligned}
\Rightarrow y_{2}^{\prime \prime}-3 y_{2}^{\prime}+2 y_{2} & =4 e^{2 x}-3\left(2 e^{2 x}\right) \\
& +2 e^{2 x}=0 .
\end{aligned}
$$

$y_{2}=e^{2 x}$ is a solution of eqn

To Prove,
y is linearly independent
Enough to prove that $1 \omega\left(y_{1}, y_{2}\right)=0$

$$
\begin{aligned}
\omega\left(e^{x}, e^{2 x}\right) & =\left|\begin{array}{l}
e^{x} e^{2 x} \\
e^{x} 2 e^{2 x}
\end{array}\right| \\
& =\left(e^{x}\right) \cdot\left(2 e^{2 x}\right)-e^{x} \cdot e^{2 x} \\
& =e^{3 x} \neq 0 \quad 2 e^{x} e^{2 x}-e^{x} \cdot e^{2 x}
\end{aligned}
$$

4 is linearly independent
Comparing (l) with.

$$
\begin{aligned}
& \text { omparing (1) with } \\
& 4^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0 ; \\
& P(x)=-3 \text { and } Q(x)=2
\end{aligned}
$$

Hence $P(x)$ and $Q(x)$ are Constant function.
$D(x)$ and $Q(x)$ are Continuously in $[a, b]$

By theorem,
$y=c_{1} e^{x}+c_{2} e^{2 x}$ is a general solution of the equation

$$
\begin{array}{l|l}
y(0)=c_{1} e^{0}+c_{2} e^{e} & \begin{array}{l}
y(0)=c_{1} e^{x}+2 c_{2} e^{2 x} \\
-1=c_{1}+c_{2}=\sqrt{3}
\end{array} \\
c_{1}+c_{2}=-1 & y^{\prime}(0)=c_{1} e^{0}+2 c_{2} e^{2(0)} \\
y=c_{1}+2 c_{2} \tag{H}\\
c_{1}+2 c_{2}=1
\end{array}
$$

$\Rightarrow \quad C_{2}=2$

$$
\begin{equation*}
c_{1}=-3 \tag{1}
\end{equation*}
$$

$y=-3 e^{x}+2 e^{2 x}$ is a Particular
Solution of the equation (1)
(12) Show that $y=c_{1} e^{2 x}+c_{2} x e^{2 x}$ is the general solution of $4^{\prime \prime}-1 y^{\prime}+4 y=0$ on any in terval

Sol:
Given $y^{\prime \prime}-4 y^{\prime}+4 y=0$

$$
\begin{align*}
y & =c_{1} e^{2 x}+c_{2} x e^{2 x} \tag{1}\\
y_{1} e^{\prime} & =e^{2 x} \\
y_{2} & =x e^{2 x} \\
y_{2}^{\prime} & =2 x e^{2 x}+e^{2 x} \\
y_{2}^{\prime \prime} & =4 x e^{2 x}+2 e^{2 x}+2 e^{2 x} \\
y_{2}^{\prime \prime} & =4 x e^{2 x}+4 e^{2 x} \\
y_{1}^{\prime \prime}-4 y_{1}^{\prime}+4 y & =4 e^{2 x}-4\left(2 e^{2 x}\right)+4 e^{2 x}=0
\end{align*}
$$

4. is the solution of eq (1)

$$
\begin{aligned}
0 & \Rightarrow 4 x e^{2 x}+4 e^{2 x}-4\left(2 x e^{2 x}+e^{2 x}\right) \\
& +4 x e^{2 x} \\
= & H x e^{2 x}+4 e^{2 x}-8 x e^{2 x}-4 e^{2 x}+4 x e^{2 x} \\
= & 0
\end{aligned}
$$

Hence y_{2} is the soln of the equation (1)

$$
\begin{aligned}
w\left(4_{1}, y_{2}\right) & =\left|\begin{array}{ll}
e^{2 x} & x e^{2 x} \\
2 e^{2 x} & 2 x e^{2 x}+e^{2 x}
\end{array}\right| \\
& =\left(e^{2 x}\right)\left(2 x e^{2 x}+e^{2 x}\right)-2 e^{2 x} \cdot x e^{2 x} \\
& =e^{4 x}+2 x e^{4 x}+e^{4 x}-2 x e^{4 x} \\
& =e^{4 x} \neq 0 .
\end{aligned}
$$

y_{1} and y_{2} are linearly independent comparing (i) with equation
$y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0$, we get $P(x)=-4$ and $Q(x)=4$.
$\therefore P(x)$ and $Q(x)$ ane constant functions.

Hence $P(x)$ and $Q(x)$ is a general solution for (1).
(6) By inspection or experiment, final two linearly independent sols of $x^{2} y^{\prime \prime}-2 y=0$ (C) on the interval $[1,2]$ and the determine the Particular solution satisfying the initial conditions

$$
y(1)=1 ; y^{\prime}(1)=8
$$

Sols:
let $y_{1}=x^{2}$

$$
\begin{aligned}
& 4_{1}^{\prime}=2 x \quad \text { and } \\
& 4_{1}^{\prime \prime}=2
\end{aligned}
$$

From (6) $\Rightarrow x^{2} y_{1}^{\prime \prime}-2 y_{1}=0$

$$
x^{2}(2)-2\left(x^{2}\right)=2 x^{2}-2 x^{2}=0
$$

Hence 4, is a solution of (9)
Let $y_{z}=\frac{1}{x}$

$$
y_{2}^{\prime}=\frac{-1}{x^{2}} \text { and } y_{2}^{\prime \prime}=\frac{2}{x^{3}}
$$

Now $x^{2} y_{2}^{\prime \prime}-2 y_{z}=x^{2}\left(\frac{2}{x^{3}}\right)-2\left(\frac{1}{x}\right)=0$ Hence 4_{2} is a solution of (1) $\omega\left(y_{1}, y_{2}\right) \neq 0$.

Hence y_{1} and y_{2} are linearly independent Solution of (1).
comparing (1) with the general second order differential equation

$$
\begin{aligned}
& y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0 \\
& P(x)=0 \quad \text { and } \quad Q(x)=\frac{-2}{x^{2}}
\end{aligned}
$$

$P(x)$ and $Q(x)$ are continuously functions By theorem

$$
y=c_{1} x^{2}+c_{2}\left(\frac{1}{x}\right) \text { is a general. }
$$

solution of equation (1).
Now,

$$
\begin{align*}
\omega_{1} \quad y\left(c_{1}\right) & =c_{1}(1)+c_{2}\left(c_{1}\right) \\
1 & =c_{1}+c_{2} \\
\therefore c_{1} & +c_{2}=1 \\
y^{\prime}(1) & =2 x c_{1}-\frac{1}{x^{2}} c_{2} \\
2 c_{1}-c_{2} & =8 \tag{3}
\end{align*}
$$

(2) + (3)

$$
\Rightarrow \quad \begin{aligned}
3 c_{1} & =9 \\
c_{1} & =3
\end{aligned}
$$

(2) \Rightarrow

$$
\begin{aligned}
& 3+c_{2}=1 \\
& c_{2}=-2
\end{aligned}
$$

$y=3 x^{2}-\frac{2}{x}$ is the Particular solution of the equation (©).

Pb:(17) In each of the following, verify the function $y_{1}(x)$ and $y_{2}(x)$ are linearly independent solution of the given differential equation on the interval $[0,2]$ and final the solution satisfying
the initial conditions.
(a.) $4^{\prime \prime}+4^{\prime}-2 y=0, \quad y_{1}=e^{x}$ and

$$
y_{2}=e^{-2 x}, y(0)=8 \text {; and } y^{\prime}(0)=2
$$

(b). $y^{\prime \prime}+y^{\prime}-2 y=0, u_{1}=e^{x}$ and

$$
\begin{aligned}
& y_{2}=e^{-2 x}, y(1)=0 \text { and } y^{\prime}(1)=0 \\
& \text { (C) } y^{\prime \prime}+5 y^{\prime}+6 y=0, y_{1}=e^{-2 x}, \\
& y_{2}=e^{-2 x}, y(0)=1 \text { and } y^{\prime}(0)=1 .
\end{aligned}
$$

(d.) $y_{1}^{\prime \prime}+y^{\prime}=0 ; y_{1}=1 ; y_{2}=e^{-x}$

$$
y(2)=0 ; \quad y^{\prime}(2)=e^{-2}
$$

Sorn:
(a). Given $y^{\prime \prime}+y^{\prime}-2 y=0$

Let $y_{1}=e^{x}$ and $y_{2}=e^{-2 x}$

$$
\begin{array}{l|l}
y_{1}^{\prime}=e^{x} & y_{2}^{\prime}=-2 e^{-2 x} \\
y_{1}^{\prime \prime}=e^{x} & y_{2}^{\prime \prime}=4 e^{-2 x}
\end{array}
$$

(c)

$$
\begin{aligned}
& =5 \quad 4_{1}^{4}+y_{1}^{\prime}-2 y_{1}=0 \\
& \Rightarrow \quad e^{x}+e^{x}-2 e^{x}=0
\end{aligned}
$$

Hence y_{1} is the solution of (i)
(11)

$$
\begin{aligned}
\Rightarrow y_{2}^{\prime \prime}+y_{2}^{\prime}-2 y & =4 e^{-2 x}-2 e^{-2 x} 2 e^{-2 x} \\
& =4 e^{-2 x}-4 e^{-2 x}=0
\end{aligned}
$$

Hence y_{2} is the soln of (1)

$$
\begin{aligned}
w\left(y_{1}, y_{2}\right) & =\left|\begin{array}{cc}
e^{x} & e^{-2 x} \\
e^{x} & -2 e^{-2 x}
\end{array}\right| \\
& =e^{x} \cdot(-2) e^{-2 x}-e^{x} \cdot e^{-2 x} \\
& =-2 e^{-x}-e^{-x} \\
& =-3 e^{-x} \neq 0
\end{aligned}
$$

Hence 4_{1} and y_{2} are linearly indepent Comparing (8) with second order differential equation

$$
P(x)=1 \text { and } Q(x)=-2
$$

Hence $P(x)$ and $a(x)$ are Continuous function

By theorem,

$$
y=c_{1} \cdot e^{x}+c_{2} e^{-2 x} \text { is a general }
$$

Sols of equation ().
Now $y(0)=c_{1} e^{0}+c_{2} e^{0}$

$$
\begin{gather*}
c_{1}+c_{2}=8 \tag{2}\\
y^{\prime}(0)=c_{1} e^{x}-2 c_{2} e^{-2 x} \\
2=c_{1} e^{0}-2 c_{2} e^{0} \\
\therefore c_{1}-2 c_{2}=2 \tag{3}
\end{gather*}
$$

(2)
-(3)

$$
\begin{aligned}
\Rightarrow & 6=c_{2}+2 c_{2} \\
6 & =3 c_{2} \\
c_{2} & =2 \\
\left(20 \Rightarrow c_{1}\right. & =6
\end{aligned}
$$

$y=6 e^{x}+2 e^{-2 x}$ is the Parficular Solution of the equation (1)
(b). $y=c_{1} e^{x}+c_{2} e^{-2 x}$ is the qeneral Soloution of the equation (1) Now $y(1)=c_{1} e^{1}+c_{2} e^{-2}$

$$
\begin{align*}
0 & =c_{1} \cdot e^{1}+c_{2} e^{-2} \tag{2}\\
y^{\prime}(x) & =c_{1} \cdot e^{x}-2 c_{2} e^{-2 x} \\
0 & =c_{1} e^{1}-2 c_{2} e^{-2} \tag{3}
\end{align*}
$$

(2) - (3)

$$
\begin{aligned}
& \Rightarrow c_{2} e^{-2}+2 c_{2} e^{-2} \\
& 0=3 c_{2} e^{-2} \\
& \therefore c_{2}=0
\end{aligned}
$$

(2) \Rightarrow

$$
\begin{gathered}
c_{1} e^{1}+\theta=0 \\
c_{1}=0
\end{gathered}
$$

$y=0$ is the Particular Solution of the equation (D).
(c). Given

$$
\begin{array}{l|l}
y^{\prime \prime}+5 y^{\prime}+6 y=0 \tag{1}\\
y_{1}=e^{-2 x} \text { and } \\
y_{2}=e^{-3 x} \\
y_{1}^{\prime}=-2 e^{-2 x} & y_{2}^{\prime}=-3 e^{-3 x} \\
y_{1}^{\prime \prime}=4 e^{-2 x} & y_{2}^{\prime \prime}=9 e^{-3 x}
\end{array}
$$

(1)

$$
\begin{aligned}
& \Rightarrow 44_{1}^{\prime \prime}+5 y_{1}^{\prime}+6 y_{1}=0 \\
& \Rightarrow 4 e^{-2 x}+5\left(-2 e^{-2 x}\right)+6\left(e^{-2 x}\right)=0 \\
& \Rightarrow 4 e^{-2 x}-10 e^{-2 x}+6 e^{-2 x}=0
\end{aligned}
$$

Hence $y_{1}=e^{-2 x}$ is the soln of (1)

$$
\begin{aligned}
& \text { (1) } \Rightarrow y_{2}{ }^{\prime \prime}+5 y_{2}^{\prime}+6 y_{2}=0 \\
& \Rightarrow 9 e^{-3 x}+5\left(-3 e^{-3 x}\right)+6\left(e^{-3 x}\right) \\
& =9 e^{-3 x}-15 e^{-3 x}+6 e^{-3 x} \\
& =0
\end{aligned}
$$

Hence $y_{2}=e^{-3 x}$ is the foln of the equation (1)

$$
\begin{aligned}
w\left(y_{1}, y_{2}\right) & =\left|\begin{array}{ll}
e^{-2 x} & e^{-5 x} \\
-2 e^{-2 x} & -3 e^{-3 x}
\end{array}\right|=\left(e^{-2 x}\right)\left(-3 e^{-3 x}\right) \\
& -\left(e^{-3 x}\right)\left(-2 e^{-2 x}\right) \\
& =-3 e^{-5 x}+2 e^{-5 x}=e^{-5 x} \neq 0 .
\end{aligned}
$$

Hence 4_{1} and y_{2} are linearly Indep end ant.

Comparing (1) with second order differential equation

$$
\begin{aligned}
& 4^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0 . \\
& P(x)=5 ; \quad Q(x)=0 .
\end{aligned}
$$

$P(x)$ and $Q(x)$ are continuous function B4 theorem,

$$
y=c_{1} e^{-2 x}+c_{2} e^{-3 x} \text { is a general }
$$ solution for (1)

$$
\begin{align*}
& y(0)=c_{1} e^{0}+c_{2} e^{0} \\
& c_{1}+c_{2}=1 \tag{2}\\
& 4^{\prime}=-2 c_{1} e^{-2 x}-3 c_{2} e^{-3 x} \\
& 4^{*}(0)=-2 c_{1} e^{0}-3 c_{2} e^{0} \\
& 2 c_{1}-3 c_{2}=1
\end{align*}
$$

$$
\begin{align*}
& (2)+(2) \Rightarrow 2=2 c_{1}+2 c_{2} \tag{4}\\
& (4)+(3) \Rightarrow 2 c_{1}+2 c_{2}-2 c_{1}-3 c_{2}=2+1 \\
& -c_{2}=3 \\
& c_{2}=-3
\end{align*}
$$

$y=4 e^{-2 x}-3 e^{-3 x}$ is the Particular Solution of (C).
(d). Given $4^{\prime \prime}+4^{\prime}=0$

$$
\begin{array}{l|l}
y_{1}=1 & y_{2}=e^{-x} \tag{1}\\
y_{1}^{\prime}=0 & y_{2}^{\prime}=-e^{-x} \\
y_{1}^{\prime \prime}=0 & y_{2}^{\prime \prime}=e^{-x}
\end{array}
$$

$$
\theta=5 \cdot 4^{\prime \prime}+4^{\prime}=0 \Rightarrow \theta+0=0
$$

Hence $y_{1}=1$ is the solution of (1)

$$
\text { (1) }=5 \quad y_{2}^{\prime \prime}+y_{2}^{\prime}=0 \Rightarrow e^{-x}-e^{-x}=0
$$

Hence $y_{2}=e^{-x}$ is the solution of (1)

$$
\begin{aligned}
& w\left(y_{1}, y_{2}\right)=\left|\begin{array}{cc}
1 & e^{-x} \\
0 & -e^{-x}
\end{array}\right|=-e^{-x}+0 \\
& =-e^{-x} \neq 0 \text {. } \\
& w\left(u_{1}, u_{2}\right) \neq 0
\end{aligned}
$$

Hence 4_{1} and 42 are linearly independent
Comparing (1) with second order differential equation

$$
\begin{aligned}
& \varphi^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0 \\
& P(x)=1 \text { and } Q(x)=0
\end{aligned}
$$

$P(x)$ and $Q(x)$ are Continuous function.

By theorem,

$$
y=c_{1}(1)+c_{2} e^{-x} \text { is a general }
$$

Solution for (a)

$$
\begin{aligned}
y(2) & =c_{1}+c_{2} e^{-2} \\
0 & =c_{1}+c_{2} e^{-2} \\
4^{\prime}(x) & =0-c_{2} e^{-x} \\
4^{\prime}(2) & =-c_{2} e^{-2} \\
e^{-2} & =-c_{2} e^{-2} \\
-c_{2} & =1 \\
\therefore c_{2} & =-1
\end{aligned}
$$

(2) $\Rightarrow \quad c_{1}=e^{-2}$
$y=e^{-2}+(-1) e^{-x}$ is the Particular solution of (11).

Dh. 18 Verify that $y_{1}=1 ; y_{2}=\log x$ are
linearly independent solutions of the equations $4^{\prime \prime}+\left(y^{\prime}\right)^{2}=0$ on any interval Is $y=c_{1}+c_{2} \log x$ the general solution.
son:
Given $\quad 4^{\prime \prime}+\left(4^{\prime}\right)^{2}=0$

$$
\begin{array}{l|l}
y_{1}=1 & y_{2}=\operatorname{cog} x \\
y_{1}^{\prime}=0 & y_{2}^{\prime}=\frac{1}{x} \\
y_{1}^{\prime \prime}=0 & y_{2}^{\prime \prime}=\frac{-1}{x^{2}} \\
0 \Rightarrow u_{1}^{\prime \prime}+\left(u_{1}^{\prime}\right)^{2} \Rightarrow 0 \Rightarrow 0=0
\end{array}
$$

Hence, $4 i$ is the sorn of equ (1)

$$
\begin{aligned}
(\theta) \Rightarrow y_{2}^{\prime} & +\left(y_{2}^{\prime}\right)^{2}=\frac{-1}{x^{2}}+\left(\frac{1}{x}\right)^{2} \\
& =\frac{-1}{x^{2}}+\frac{1}{x^{2}}=0
\end{aligned}
$$

Hence y_{2} is the solution of equation (1)

$$
\begin{aligned}
w\left(y_{1}, y_{2}\right) & =\left|\begin{array}{cc}
1 & \log x \\
0 & \frac{1}{x}
\end{array}\right| \\
& =\frac{1}{x}-0=\frac{1}{x} \neq 0 .
\end{aligned}
$$

4. and 4_{2} are linearly independent

$$
\begin{aligned}
& y_{1}=c_{1}+c_{2} \log x \\
& 4^{\prime}=0+c_{2}\left(\frac{1}{x}\right) \\
& 4^{\prime \prime}=-c_{2} \frac{1}{x^{2}}
\end{aligned}
$$

$$
(0) \Rightarrow 4^{\prime \prime}+\left(y^{\prime}\right)^{2}=\frac{-c_{2}}{x^{2}}+\left(\frac{c_{2}}{x}\right)^{2}=0
$$

$y=c_{1}+c_{2} \log x$ is the general solution. \qquad
23) 7) 19 Theorem:-

If y_{i} is a solution of $4^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0$. then $y_{2}=v y_{1}$ is other independent Solution, where $v=\int \frac{1}{y_{1}^{2}} e^{-\int p d x} d x$.
Proof $=$

$$
4^{\prime \prime}+R(x) y^{\prime}+Q(x) y=0
$$

y_{1} is a solution of (1)

$$
\begin{equation*}
y_{1}^{\prime \prime}+P_{1}(x) y_{1}^{\prime}+Q(x) y_{1}=0 \tag{2}
\end{equation*}
$$

Assume that $y_{2}=v y_{1}$ is another independent solution of (1)

$$
\begin{aligned}
y_{2}^{\prime} & =v y_{1}^{\prime}+v^{\prime} y_{1} \\
y_{2}^{\prime \prime} & =v y_{1}^{\prime \prime}+v^{\prime} y_{1}^{\prime}+v^{\prime} y_{1}^{\prime}+v^{\prime \prime} y_{1} \\
y_{2}^{\prime \prime} & =v y_{1}^{\prime \prime}+2 v^{\prime} y_{1}^{\prime}+v^{\prime \prime} y_{1}
\end{aligned}
$$

y_{2} is a solution of (11)

$$
\begin{aligned}
& y_{2}^{\prime \prime}+p(x) y_{2}^{\prime}+Q(x) y_{2}=0 \\
& \Rightarrow v y_{1}^{\prime \prime}+2 v^{\prime} y_{1}^{\prime}+v^{\prime \prime} y_{1}+p(x)\left(v y_{1}{ }^{\prime}+v^{\prime} y_{1}\right) \\
& +Q(x) \vee y,=0 \\
& \Rightarrow v^{\prime \prime} y_{1}+v^{\prime}\left(2 y_{1}^{\prime}+P(x) u_{1}\right)+ \\
& v\left(y_{1}^{\prime \prime}+P(x) y_{1}^{\prime}+Q(x) y_{1}\right)=0 \\
& \Rightarrow v^{\prime \prime} y_{1}+\left(2 y_{1}^{\prime}+p(x) y_{1}\right) v^{\prime}+0=0 \\
& \Rightarrow v^{\prime \prime} y_{1}+\left(2 y_{1}^{\prime}+P(x) y_{1}\right) v^{\prime}=0 \\
& \Rightarrow v^{\prime \prime} y_{1}=-\left(2 y_{i}+p\left(x_{1}\right) y_{1}\right) v^{\prime} \\
& \Rightarrow \frac{v^{\prime \prime}}{v^{\prime}}=\frac{-2 y_{1}^{\prime}}{y_{1}}-\frac{p(x) y_{1}}{y_{1}} \\
& =\frac{-2 y_{1}}{y_{1}}-p(x) \\
& \Rightarrow \int \frac{v^{\prime \prime}}{v^{\prime}} d x=-2 \int \frac{4_{1}^{\prime}}{y_{1}} \cdot d x+\int p(x) d x \\
& \log v^{\prime}=-2 \log y_{1}-\int p(x) d x \\
& \log v^{\prime}+2 \log y=-\int p(x) d x \\
& \log v^{\prime}+\log 4_{1}{ }^{2}=-\int P(x) d x
\end{aligned}
$$

$$
\begin{aligned}
& \log \left(v^{\prime} y_{1}^{2}\right)=-\int p(x) d x \\
& v^{\prime} y_{1}{ }^{2}=e^{-\int p(x) d x} \\
& v^{\prime}=\frac{1}{y_{1}^{2}} e^{-\int p(x) d x} \\
& v=\int \frac{1}{y_{1}^{2}} e^{-\int p(x) d x} \cdot d x
\end{aligned}
$$

$y_{1}=x$ is a Solution of $x^{2} y^{\prime \prime}+x y^{1}-y=0$. Find the general solution.
Soln:
Given,

$$
\begin{equation*}
x^{2} y^{\prime \prime}+x y^{\prime}-y=0 \tag{1}
\end{equation*}
$$

$y_{1}=x$ is a solution of (1)
\therefore Another indepedent solution is given by $y_{2}=v y_{1}$ where $r=\int \frac{1}{y_{1}^{2}} e^{-\int p(x) d x} \cdot d x$

Now (1) $\Rightarrow y^{\prime \prime}+\frac{1}{x} y^{\prime}-\frac{4}{x^{2}}=0$

$$
\begin{aligned}
& \therefore P(x)=\frac{1}{x} \\
& \therefore V=\int \frac{1}{x^{2}} e^{-\int \frac{1}{x} d x} \cdot d x
\end{aligned}
$$

$$
\begin{aligned}
& =\int \frac{1}{x^{2}} e^{-\log x} d x \\
& =\int \frac{1}{x^{2}} e^{\log x^{-1}} d x \\
& =\int \frac{1}{x} \cdot x^{-1} d x \\
& =\int \frac{d x}{x^{3}} \\
& =\int x^{-3} d x \\
& \left.=\int \frac{x^{-2}}{-2}\right] \\
& =-\frac{1}{2 x^{2}} \\
& =\left(-\frac{1}{2 x^{2}}\right) x \\
& =\left(-\frac{1}{2 x}\right)
\end{aligned}
$$

\therefore The qeneral solution of (1)
in $\quad y=c_{1} y_{1}+c_{2} y_{2}$

$$
y=c_{1} x-c_{2} \frac{1}{2 x}
$$

Find the general solution of $y^{\prime \prime}+y=0$. Given that $y_{1}=\sin x$ is a solution.
sole.
Let $4^{\prime \prime}+y=0$
Given $y_{1}=\sin x$ is a solution of equation (1).

Let $y_{2}=v_{y_{1}}$ is another independent solution of equation (1)
where $\quad V=\int \frac{1}{y_{1}^{2}} e^{-\int p d x} \cdot d x$
From Υ,

$$
\begin{aligned}
& P(x)=0 \text { and } Q(x)=1 \\
& \therefore V
\end{aligned} \begin{aligned}
& P\left(\frac{1}{(\sin x)^{2}} e^{-\int \cos d x} \cdot d x\right. \\
&= \int \frac{1}{\sin ^{2} x} d x \\
&=\int \operatorname{cose}^{2} c^{2} x d x \quad\left[\therefore \int \operatorname{cosec}^{2} x=-\cot x\right] \\
& \therefore=-\cot x \\
& \Rightarrow y=(-\cot x) \sin x
\end{aligned}
$$

$$
=-\frac{\cos x}{\sin x} \cdot \sin x
$$

Solution of (द), $y_{z}=-\cos x$ is another indepent

Then $y=c_{1} \sin x-c_{2} \cos x$ is a general Solution of equation (1).

Q6: The equation $x y^{\prime \prime}+3 y^{\prime}=0$ has obvious solution $y_{1}=1$, find y_{2} and general solution.

Sols:
Let $x y^{\prime \prime}+3 y^{\prime}=0$
Given $y_{1}=1$ is a obvious solution of equation (1).

Let $y_{2}=v_{y}$, be another solution of equation (1). where $v=\int \frac{1}{4_{1}^{2}} e^{-\int p(x) d x} \cdot d x$

Now comparing the equation (1) with general second order differential equation.

$$
y^{\prime \prime}+\frac{3}{x} y^{\prime}=0
$$

Now, we get $p(x)=\frac{3}{x}$ and $a(x)=0$.

Now, comparing the equation
(8) with general second order differential equation

$$
y^{\prime \prime}+\frac{3}{x} y^{\prime}=0
$$

Now, we get $p(x)=\frac{3}{x}$ and

$$
Q(x)=0
$$

Now, we get P
Now, $v=\int \frac{1}{()^{2}} e^{-\int 3 / x d x} d x d x$
$=\int e^{-3 \int \frac{1}{x} d x} \cdot d x$
$=\int e^{-5 \log x} d x$
$=\int e^{\log x^{-3}} \cdot d x$

$$
=\int x^{-3} d x
$$

$$
\begin{aligned}
& =\left(\frac{x^{-3+1}}{-3+1}\right)=\frac{x^{-2}}{-2} \\
& =1 / 2 x^{-2} \\
V & =-1 / 2 x^{2} \\
\therefore y_{2} & =\frac{-1}{2 x^{2}}\left(y_{1}\right)=\frac{-1}{2 x^{2}}(1) \\
y_{2} & =\frac{-1}{2 x^{2}} \text { is a solution of }
\end{aligned}
$$

equation (1).
The general solution of eqn(1)

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(1)+c_{2}\left(\frac{-1}{2 x^{2}}\right) \\
y & =c_{1}-\frac{c_{2}}{2 x^{2}}
\end{aligned}
$$

Pb. Verify that $y_{1}=x^{2}$ is a solution of $x^{2} y^{\prime \prime}+x y^{\prime}-4 y=0$. Find y_{2} and general solution.

Som.
let $x^{2} y^{\prime \prime}+x y^{\prime}-x y=0$

Giver $y_{1}=x^{2}$
$y_{1}^{\prime}=2 x$ and $y_{1}^{\prime \prime}=2$

Now, $x^{2} y_{1}^{\prime \prime}+x y_{1}^{\prime}-4 y_{1}$

$$
\begin{aligned}
& =x^{2}(2)+x(2 x)-4 x^{2} \\
& =2 x^{2}+2 x^{2}-4 x^{2} \\
& =0
\end{aligned}
$$

Hence. $y_{1}=x^{2}$ is a solution of
eqn (1).
Let $y_{2}=v_{y_{1}}$ be another soln of eqn (0), where

$$
v=\int \frac{1}{4_{1}^{2}} e^{-\int p(x)} \cdot d x
$$

Now comparing the eq (1) with second order differential eq

$$
y^{\prime \prime}+\frac{x}{x^{2}} y^{\prime}-\frac{4}{x} y=0
$$

$P(x)=\frac{1}{x}$, and $Q(x)=\frac{-4}{x}$
Now $\quad V=\int \frac{1}{\left(x^{2}\right)^{2}} e^{-\int 1 / x d x} \cdot d x$

$$
\begin{aligned}
& =\int \frac{1}{x^{4}} e^{-\log x} d x \\
& =\int \frac{1}{x^{4}} x^{-1} d x \\
& =\int x^{-4} \cdot x^{-1} d x \\
& =\int x^{-5} d x \\
& =\frac{x^{-5+1}}{-5+1}=\frac{x^{-4}}{-4} \\
v & =\frac{-1}{4 x^{4}} \int x^{4} \\
y & =\frac{-1}{4 x^{4}}-x^{2} \\
y_{2} & =-\frac{1}{4 x^{2}} \text { is a sol of eqn } \\
y & =c_{1} y_{1}+c_{2} 42 \\
y & =c_{1} x^{2}-\frac{c_{2}}{4 x^{2}}
\end{aligned}
$$

$$
2 / 4
$$

pb: Show that $y_{1}=x$ is a sown of the equation $x^{2} y^{\prime \prime}+2 x y^{\prime}-2 y=0$. Find y_{2} and General sols
Son. let $x^{2} y^{\prime \prime}+2 x y^{\prime}-2 y=0$

Given $y_{1}=x$ is the som of the eqn (1)

Let $y_{2}=v y$, be another join of equation (c) where

$$
V=\int \frac{1}{y_{1}^{2}} e^{-\int p(x) d x} \cdot d x
$$

Now comparing eq (1) to second order differential equation.

$$
\begin{aligned}
4^{\prime \prime} & +\frac{2 x}{x^{2}} y^{\prime}-\frac{2}{x^{2}} y=0 \\
P(x) & =\frac{2}{x} \text { and } \quad Q(x)=\frac{-2}{x^{2}} \\
V & =\int \frac{1}{x^{2}} e^{-\int 2 / x d x} \cdot d x \\
& =\int \frac{1}{x^{2}} e^{-2 \log x} \cdot d x \\
& =\int \frac{1}{x^{2}} \cdot \log x^{-2} \cdot d x \\
& =\int \frac{1}{x^{2}} x^{-2} \cdot d x \\
& =\int \frac{1}{x^{4}} d x=\int x^{-4} d x
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{x^{-4+1}}{-4+1}=\frac{x^{-3}}{-3} \\
v & =\frac{-x^{-3}}{3} \\
v & =-\frac{1}{3 x^{3}} x
\end{aligned}
$$

$y_{2}=\frac{-1}{3 x^{2}}$ is solution of eq

$$
y=c_{1} 4_{1}(x)+c_{2} y_{2}(x)
$$

$y=C_{1} x-\frac{C_{2}}{3 x^{2}}$ is a general solution 4.

Pb : Show that $y_{1}=x$ is a solution equation $x^{2} y^{\prime \prime}-x(x+2) u^{\prime}+(x+2) y=0$. Find the general equation.

Sol:
let $x^{2} y^{\prime \prime}-x(x+2) y^{\prime}+(x+2) y=0$
Given $y_{1}=x$ is a soln of (1)
Let $y_{2}=r y_{1}$ is another soln of (1) where $\quad v=\int \frac{1}{y_{1}{ }^{2}} e^{-\int \rho(x) d x} \cdot d x$

Now comparing equation (11) with Second order differential equation

$$
\begin{aligned}
& P(x)=\frac{-(x)(x+2)}{x^{2}} \text { and } \\
& Q(x)=\frac{x+2}{x^{2}} \\
& P(x)=\frac{-(x+2)}{x}=-1-\frac{2}{x} . \\
& v=\int \frac{1}{x^{2}} e^{-\int-(1+2 / x) \cdot d x} \cdot d x \\
& =\int \frac{1}{x^{2}} \cdot e^{\int(1+2 / x) d x} \cdot d x \\
& =\int \frac{1}{x^{2}} e^{\int d x+2 d x / x} \cdot d x \\
& =\int \frac{1}{x^{2}} \cdot e^{\int d x+2 \log x} \cdot d x \\
& =\int \frac{1}{x^{2}} e^{x+2 \log x} \cdot d x \\
& =\int \frac{1}{x^{2}} e^{4} \cdot e^{\log x^{2}} d x \\
& =\int \frac{1}{x^{2}} e^{x} \cdot x^{2} \cdot d x \\
& =\int e^{x} \cdot d x=e^{x} \\
& v=e^{x}
\end{aligned}
$$

$$
\begin{aligned}
& y_{2}=e^{x} \cdot x \text { is a soln of (11) } \\
& y=c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& y=c_{1} x+c_{2}\left(e^{x} \cdot x\right) \text { is a }
\end{aligned}
$$ general solution of 0 .

Pb: Verify $y_{1}=x^{-1 / 2} \cdot \operatorname{Sin} x$ is one Solution of $x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-1 / 4\right) y=0$. Find the general solution.

Sole.
let $x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-1 / 4\right) y=0$.
Given $y=x^{-\sqrt{2}} \cdot \sin x$

$$
\begin{aligned}
y_{1}^{\prime}= & x^{-1 / 2} \cdot \cos x+\sin x\left(-1 / 2 x^{-1 / 2}\right) \\
y_{1}^{\prime}= & -1 / 2 x^{-3 / 2} \cdot \sin x+x^{-1 / 2} \cos x \\
y_{1}^{\prime \prime}= & -1 / 2\left[-3 / 2 x^{-3 / 2-1} \sin x+x^{-3 / 2}(\cos x)\right] \\
& {\left[-1 / 2 x^{-1 / 2-1} \cos x+x^{-1 / 2}(-\sin x)\right] } \\
= & 3 / 4 x^{-5 / 2} \sin x-1 / 2 x^{-3 / 2} \cos x \\
& -1 / 2 x^{-3 / 2} \cos x-x^{-1 / 2} \sin x .
\end{aligned}
$$

$$
\begin{aligned}
& 4_{1}{ }^{\prime \prime}=3 / 4 x^{-5 / 2} \sin x-x^{-3 / 2} \cos x- \\
& x^{-1 / 2} \sin x \text {. } \\
& \text { (1) } \Rightarrow x^{2} 4_{1}^{\prime \prime}+x y_{1}^{\prime}+\left(x^{2}-1 / 4\right) 4 \text {, } \\
& =x^{2}\left[3 / 4 x^{-5 / 2} \sin x-x^{-3 / 2} \cos x\right. \\
& \left.-x^{-1 / 2} \sin x\right] \\
& +x\left[-1 / 2 x^{-3 / 2} \sin x+x^{-1 / 2} \cos x\right] \text {. } \\
& +\left(x^{2}-1 / 4\right)\left(x^{-1 / 2} \sin x\right) \\
& =3 / 4 x^{2} \cdot x^{-5 / 2} \sin x-x^{2} \cdot x^{-3 / 2} \cos x \\
& -x^{2} \cdot x^{-1 / 2} \sin x+x \cdot x^{-1 / 2} \cdot \sin x \\
& +1 / 4 x^{-1 / 2} \sin x \text {. } \\
& =3 / 4 x^{-1 / 2} \sin x-x^{-1 / 2} \cos x- \\
& x^{3 / 2} \sin x+x^{1 / 2} \cos x-1 / 2 \sin x \cdot x^{-1 / 2} \\
& +x^{3 / 2} \cdot \sin x-1 / 4 \cdot x^{-1 / 2} \sin x \\
& =3 / 4 x^{-1 / 2} \sin x-1 / 2 x^{-1 / 2} \sin x \\
& -1 / 4 x^{-1 / 2} \sin x \\
& =-1 / 2 x^{-1 / 2}-\sin x+1 / 2 x^{-1 / 2} \sin x \\
& y_{1}=0 .
\end{aligned}
$$

Hence $y_{1}=x^{-1 / 2} \cdot \sin x$ is the Solution of eqn (II)
let $y_{2}=v y_{1}$ be another sole of (1),
where $\quad v=\int \frac{1}{y_{1}^{2}} e^{-\int D(x) d x} \cdot d x$
Now comparing equation (a) to second order differential equation.

$$
\begin{aligned}
y_{1}^{\prime \prime} & +\frac{x}{x^{2}} 4_{1}^{\prime}+\frac{\left(x^{2}-1 / 4\right)}{x^{2}} y_{1}=0 \\
P(x) & =\frac{1}{x} \text { and } Q(x)=\frac{x^{2}-1 / 4}{x^{2}} \\
V & =\int \frac{1}{\left(x^{-1 / 2} \sin x\right)^{2}} e^{-\int 1(x-d x} \cdot d x \\
& =\int \frac{1}{x^{-1} \sin ^{2} x} e^{-\operatorname{cog} x} \cdot d x \\
& =\int \frac{x^{1}}{\sin ^{2} x} e^{\log x^{-1}} \cdot d x \\
& =\int \frac{x^{2+1}}{\sin ^{2} x} x^{-1} d x \\
& =\int \frac{1}{\sin ^{2} x} d x
\end{aligned}
$$

$y_{2}=-x^{-1 / 2} \cos x$ is a son of (1) The general solution is

$$
\begin{aligned}
& y=c_{1} y_{1}+c_{2} y_{2} \\
& y=c_{1}\left(x^{-1 / 2} \sin x\right)-c_{2}\left(x^{-1 / 2} \cos x\right)
\end{aligned}
$$

$$
4 .
$$

Ph: Verify $y_{i}=e^{x}$ is a sols of $x y^{\prime \prime}-(2 x+1) y^{\prime}+(x+1) y=0$. Find y_{2} and general solution.

Sorn.

$$
\begin{equation*}
\text { let } x y^{\prime \prime}-(2 x+1) y^{\prime}+(x+i) y=0 \tag{1}
\end{equation*}
$$

Given $y_{1}=e^{x}$

$$
y_{1}^{\prime}=e^{x} \quad \text { and } \quad y_{2}^{\prime \prime}=e^{x}
$$

$$
0 \Rightarrow x y_{1}^{\prime \prime}-(2 x+1) y_{1}^{\prime}+(x+1) y_{1}
$$

$$
\begin{aligned}
& =\int \operatorname{cosec}^{2} x-d x \\
& v=-\cot x \\
& y_{2}=v y_{1}=-\cot x \cdot x^{-1 / 2} \sin x \\
& =-\frac{\cos x}{\sin x} x^{-1 / 2} \cdot \sin x
\end{aligned}
$$

$$
\begin{aligned}
& =x\left(e^{x}\right)-(2 x+1) e^{x}+(x+1) e^{x} \\
& =x e^{x}-2 x \cdot e^{x}-e^{x}+x e^{x}+e^{x} \\
& =0
\end{aligned}
$$

\therefore Hence $y_{1}=e^{x}$ is the solm of (1)
let $y_{2}=r y_{1}$, is another solution of (11)
whene $\quad V=\int \frac{1}{y_{1}^{2}} e^{-\int P(x) d x} \cdot d x$
Comparing eqn (1) with second. onder diffenential equation.

$$
\begin{aligned}
Y^{\prime \prime} & =\frac{(2 x+1}{x} 4^{\prime}+\frac{(x+1)}{x} y=0 \\
p(x) & \left.=-\frac{-(2+1 / x)}{x+1}\right) \text { and } Q(x)=\frac{x+1}{x} \\
v & =\int \frac{1}{\left(e^{x}\right)^{2}} \cdot e^{-\int-(2+1 / x) d x} \cdot d x \\
& =\int \frac{1}{e^{2 x}} \cdot e^{\int(2+1 / x)} d x \\
& =\int \frac{1}{e^{2 x}} \cdot e^{2 x}-e^{\log x} \cdot d x \\
v & =\int x d x \\
v &
\end{aligned}
$$

$y_{2}=\frac{x^{2}}{2}$ is the sols of (1)
The general sin is $y=c_{1} y_{1}+c_{2} y_{2}$

$$
y=c_{1}\left(e^{x}\right)+c_{2}\left(\frac{x^{2} e^{x}}{2}\right)
$$

Ph: If y_{1} is a non-zero soln of equ. $4^{\prime \prime}+P(x) 4^{\prime}+Q(x) y^{\prime}=0$ and $c_{2}=v y_{1}$, where $v=\int \frac{1}{y_{1}^{2}} e^{-\int D(x) \cdot d x} \cdot d x$ Show that wronskian of y_{1}, and H_{2} are linearly independent

Sol:
Let $y^{\prime \prime}+P(x) u^{\prime}+Q(x) y=0$ and $v=\int \frac{1}{4,2} e^{-\int P(x)} d x \cdot d x$
$\omega\left(y_{1}, y_{2}\right)$ is linearly independent

$$
\omega\left(y_{1}, y_{2}\right)=\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|=y_{1} y_{2}^{\prime}-y_{2} y_{1}^{\prime}
$$

Since $\quad y_{2}=r y_{1}$,

$$
\begin{aligned}
y_{2}^{\prime} & =v y_{1}^{\prime}+v^{\prime} y_{1} \\
& =y_{1}\left(v y_{1}^{\prime}+v^{\prime} y_{1}\right)-y_{i}^{\prime}\left(v y_{1}\right) \\
& =y_{1} v y_{1}^{\prime}+u_{1}^{2} \cdot v^{\prime}-y_{1} v^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
& =y_{1} \cdot v y_{1}{ }^{\prime}+y_{1}{ }^{2} v^{\prime}-y_{1} v^{\prime} \\
w\left(y_{1} \cdot y_{2}\right) & =v^{\prime} y_{1}{ }^{2} \neq 0 .
\end{aligned}
$$

y_{1} and y_{2} are linearly independent
The equation $\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+2 y=0$ is the special case of 10 nqehdrles eqn. $\left(1-x^{2}\right) 4^{\prime \prime}-2 x x^{\prime}+P(P+1) y=0$ corresponding to $p=1$. It has $4_{1}=x$ as a obvious soln. Find the general sain.

Sol:
Let $\left(1-x^{2}\right) y^{\prime \prime}-2 x y+2 y=0$
Given $y=x$ is an obvious Soln of (1).
let $y_{2}=v y_{1}$ is another of independent sorn where $\quad v=\int \frac{1}{4,1^{2}} e^{-\int p(x) d x} \cdot d x$ Comparing eqn (1) is second order differential equation

$$
4^{\prime \prime}-\frac{2 x}{\left(1+x^{2}\right)} y^{\prime}+\frac{2 y}{\left(1-x^{2}\right)}=0
$$

$$
R(x)=\frac{-2 x}{1-x^{2}} \quad Q(x)=\frac{2 y}{1-x^{2}}
$$

Now,

$$
\begin{align*}
& =\int \frac{1}{x^{2}} e^{-\int \frac{-2 x}{1-x^{2}}} d x \\
& =\int \frac{1}{x^{2}} e^{-\log \left(1-x^{2}\right)} \cdot d x \\
& =\int \frac{1}{x^{2}} e^{\log \left(1-x^{2}\right)^{-1}} \cdot d x \\
& =\int \frac{1}{x^{2}} \\
& =\int \frac{1}{x^{2}} \frac{1}{\left(1-x^{2}\right)^{-1}} d x \\
& =\int \frac{1}{x^{2}\left(1-x^{2}\right)} d x \tag{2}
\end{align*}
$$

Consider,

$$
\begin{aligned}
& \frac{1}{x^{2}\left(1-x^{2}\right)}=\frac{A}{x^{2}}+\frac{B}{1-x^{2}} \\
& \frac{1}{x^{2}\left(1-x^{2}\right)}=\frac{A\left(1-x^{2}\right)+B x^{2}}{x^{2}\left(1-x^{2}\right)}
\end{aligned}
$$

put $x=1 \quad 1=A(0)=B$

Method of Variation
of Parameters

To find Particular sols of second order differential equation

$$
\begin{equation*}
y^{\prime \prime}+P(x) u^{\prime}+Q(x) y=R(x) \tag{a}
\end{equation*}
$$

To find the function v_{1} and v_{2}

$$
\begin{equation*}
y=v_{1} y_{1}+v_{2} y_{2} \tag{2}
\end{equation*}
$$

Now, consider,

$$
\begin{align*}
& y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=R(x) \text { and } \\
& y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0 \tag{4}\\
& y^{\prime}=v_{1} y_{1}^{\prime}+v_{1}^{\prime} y_{1}^{\prime}+v_{2} y_{2}^{\prime}+v_{2}^{\prime} u_{2} \tag{5}
\end{align*}
$$

Let

$$
\begin{equation*}
v_{1}^{\prime} y_{1}+v_{2}^{\prime} y_{2}=0 \tag{6}
\end{equation*}
$$

then $y^{\prime}=v_{1} y_{1}+v_{2} y_{2}^{\prime}$

$$
\begin{align*}
y^{\prime \prime}= & v_{1} y_{1}^{\prime \prime}+v_{1}^{\prime} y_{1}^{\prime}+v_{2} y_{2}^{\prime \prime}+v_{2}^{\prime} \cdot y_{2}^{\prime} \tag{8}\\
(1) \Rightarrow & v_{1} y_{1}^{\prime \prime}+v_{1}^{\prime} y_{1}^{\prime}+v_{2} y_{2}^{\prime \prime}+v_{2}^{\prime} y_{2}^{\prime} \\
& +P(x)\left(v_{1} y_{1}^{\prime}+v_{2} y_{2}^{\prime}\right)+Q(2)\left(v_{1} y_{1}+v_{2} y_{2}\right)=R(x)
\end{align*}
$$

$$
\begin{aligned}
& v_{1}\left(y_{1}^{\prime \prime}+P(x) u_{1}^{\prime}+\theta(x) u_{1}\right) \\
& v_{2} v_{2}\left(y_{2}^{\prime \prime}+P(x) y_{2}^{\prime}+\theta(x) u_{2}\right) \\
& +v_{1}^{\prime} u_{1}^{\prime}+v_{2}^{\prime} y_{1}^{\prime}=R(x) \\
& v_{1}(0)+v_{2}(0)+v_{1}^{\prime} y_{1}^{\prime}+v_{2}^{\prime} u_{2}^{\prime}=R(x)
\end{aligned}
$$

$\left\{\because y\right.$, and y_{2} are solution of (1) $\}$

$$
\begin{equation*}
\Rightarrow \quad v_{1}^{\prime} y_{1}^{\prime}+v_{2}^{\prime} y_{2}^{\prime}=R(x) \tag{9}
\end{equation*}
$$

From (6) and (9)

$$
\begin{aligned}
& y_{2}^{\prime} y_{-R(x)}^{u_{1}^{\prime}}=\frac{v_{2}^{\prime}}{v_{2}^{\prime}}=\frac{v_{1}^{\prime}}{v_{1}^{\prime}} \frac{v_{2}^{\prime} y_{1}}{r_{1}^{\prime}}=\frac{1}{y_{1} y_{2}^{\prime}-y_{2} y_{2} y_{1}^{\prime} y_{2}^{\prime}-y_{2} y_{2}^{\prime}}
\end{aligned}
$$

$$
\begin{aligned}
& \int v_{1}^{\prime} d x=\int \frac{-R(x) y_{2}}{y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}} d x \\
& v_{1}=-\int \frac{R(x) y_{2}}{y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}} \cdot d x \\
& v_{2}^{\prime}=\frac{R(x)_{1}}{y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}} \cdot \\
& \int v_{2}^{\prime} d x=\int \frac{R(2) u_{1}}{y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}} \cdot d x \quad w=y_{1} y_{2}^{\prime} \\
& v_{2}=\int \frac{R(x) y_{1}}{y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}} \cdot d x \quad y=\int \frac{R(x) y_{2}}{\omega}
\end{aligned}
$$

(11) Find Particular sole of.

$$
4^{\prime \prime}+y=\operatorname{cosec} x
$$

Soln:

$$
\begin{equation*}
y^{\prime \prime}+y=\operatorname{cosec} x \tag{11}
\end{equation*}
$$

Now corresponding homogeneous equation is

$$
y^{\prime \prime}+y=0
$$

A.E is $m^{2}+1=0 \Rightarrow m^{2}=-1$

$$
m= \pm i
$$

C.F is $+5 \sin \beta x)$

$$
y=c_{1} \cos x+c_{2} \sin x
$$

Now,

$$
\begin{array}{ll}
y_{1}=\cos x, & y_{2}=\sin x \\
y_{1}^{\prime}=-\sin x, & y_{2}^{\prime}=\cos x
\end{array}
$$

$$
\begin{aligned}
w\left(y, y_{2}\right) & =\left|\begin{array}{cc}
\cos x & \sin x \\
-\sin x & \cos x
\end{array}\right| \\
& =\cos ^{2} x+\sin ^{2} x \\
& =1
\end{aligned}
$$

Hence $R(x)=\operatorname{cosec} x$

$$
\begin{aligned}
v_{1} & =-\int \frac{R(x) y_{2}}{y_{1} y_{2}-y_{1} y_{2}} d x \\
& =-\int \frac{\operatorname{cosec} x(\sin x)}{1} d x \\
& =-\int d x \\
v_{1} & =-x
\end{aligned}
$$

$$
\begin{aligned}
&\left|\operatorname{ar}^{-a r}\right|^{2} \mid \leq l \\
& v_{2}=\int \frac{R(x) 4_{1}}{4_{1} 4_{2}^{\prime}-y_{2} y_{i}} d x \\
&=\int \frac{\operatorname{cosec} x(\cos x)}{1} d x \\
&=\int \frac{\cos x}{\sin x} d x \\
&=\int \cot x d x \\
& v_{2}
\end{aligned}
$$

\therefore The Particular solution of (11)

$$
\text { in } \quad \begin{aligned}
y & =v_{1} y_{1}+v_{2} y_{2} \\
y & =-x \cos x+(\log \sin x) \sin x
\end{aligned}
$$

Find Particular soin of

$$
\begin{equation*}
y^{\prime \prime}-2 y^{\prime}+y=2 x \tag{1}
\end{equation*}
$$

Soln:
Giver that $y^{\prime \prime}-2 y^{\prime}+y=2 x$
corresponding to the homogenous eqn of (1)

$$
y^{\prime \prime}-2 y^{\prime}+y=0
$$

Auxilary eqn.(1) is $m^{2}-2 m+1=0$

$$
\begin{aligned}
& (m-1)^{2}=0 \\
& m=1,1
\end{aligned}
$$

$$
\begin{aligned}
& \text { C.F } \\
& \text { C.F is } y=e^{x}\left(c_{1} x+c_{2}\right) \\
& y=c_{1} x e^{x}+c_{2} e^{x} \\
& u_{1}=x e^{x}, \quad y_{2}=e^{x} \\
& w\left(y_{1}, y_{2}\right)=\left|\begin{array}{cc}
x e^{x} & e^{x} \\
x e^{x}+e^{x} & e^{x}
\end{array}\right| \\
& =x e^{2 x}-x e^{2 x}-e^{2 x} \\
& =-e^{2 x} \\
& \text { i.e) } y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}=-e^{2 x} \\
& =\int \frac{-R(x) y_{2}}{4 \cdot y_{2}-4: y_{2}} d x \\
& =-\int \frac{2 x x \cdot e^{x}}{-e^{2 x}} d x \\
& =2 \int \frac{x e^{x}}{e^{2 x}} d x \\
& =2 \int \frac{x}{e^{x}} d x \\
& =2 \int x e^{-x} d x
\end{aligned}
$$

$$
\begin{aligned}
v_{1} & =2\left[-x e^{-x}-e^{-x}\right] \\
v_{2} & =\int \frac{R(x) 41}{4 y_{2} 4^{\prime}-y_{i} \cdot y_{2}} d x \\
& =\int \frac{2 x \cdot x e^{x}}{-e^{2 x}} \cdot d x \\
& =-2 \int x^{2} e^{-x} d x \\
& =-2\left[-x^{2} e^{-x}-2 x e^{-x}-2 e^{-x}\right] \\
& =2 x^{2} \cdot e^{-x}+4 x e^{-x}+x e^{-x}+c
\end{aligned}
$$

The Particular soln of (1)

$$
\begin{aligned}
& y= v_{1} y_{1}+v_{2} y_{2} \\
&= {\left[2\left(-x e^{-x}-e^{x}\right)\right] x e^{x} } \\
&+\left[2 x^{2} e^{-x}+4 x e^{-x}+4 e^{-x}\right] e^{x} \\
&=-2 x e^{-x}-x e^{x}-2 x \cdot x e^{x} \\
&+2 x^{2}+4 x+4 \\
&=-2 x^{2}-2 x+2 x^{2}+4 x+4 \\
& y= 2 x+4=2(x+2)_{1 /}
\end{aligned}
$$

Ple. Find the particular soln using methed of variation of Parameter.
(a) $y^{\prime \prime}-y^{\prime}-6 y=e^{-x}$
(b) $y^{\prime \prime}+$ thy $=\tan 2 x$
(c) $y^{\prime \prime}+2 y^{\prime}+5 y=e^{-x} \sec 2 x$
(d) $y^{\prime \prime}+y=\sec x$
(e) $y^{\prime \prime}+y=x \cos x$

Soln.
(a) Given $4^{\prime \prime}-y^{\prime}-6 y=e^{-x}$
corres ponding homgeneous eqn is $\quad y^{\prime \prime}-y^{\prime}-6 y=0$

To find y

$$
\begin{gathered}
m^{2}-m-b=0 \\
(m-3)(m+2)=0 \\
m=3 \quad m=-2 \\
y=c_{1} e^{3 x}+c_{2} e^{-2 x} \\
\omega(y, 42)=-e^{3 x} \cdot 2 e^{-2 x}-3 e^{-2 x} \cdot e^{3 x} \\
=-2 e^{x}-3 e^{x}=-5 e^{x}
\end{gathered}
$$

$$
\begin{aligned}
& v_{1}=\int \frac{-R(x) y_{2}}{y_{1} y_{2}{ }^{\prime}-y_{2} y_{i}} d x \\
& =-\int \frac{e^{-x} \cdot e^{-2 x}}{-5 e^{x}} d x \\
& =\frac{1}{5} \int \frac{e^{-3 x}}{e^{x}} d x \\
& v_{1}=\frac{1}{5}\left[\frac{e^{-4 x}}{-4}\right] \\
& v_{1}=\frac{-1}{20} e^{-4 x} \\
& v_{2}=\int \frac{R(x) y_{1}}{w\left(y_{1}, y_{2}\right)} d x \\
& =\int \frac{e^{-x} e^{2 x}}{-5 e^{x}} d x \\
& =-1 / 5 \int \frac{e^{x}}{e^{x}} d x \\
& v_{2}=-1 / 5 \dot{x} \\
& y=v_{1} y_{1}+v_{2} u_{2} \\
& =-1 / 2 e^{-4 x} \cdot e^{3 x}+1 / 5 e^{-2 x} \cdot e^{x}
\end{aligned}
$$

$$
=\frac{-e^{-x}+H e^{-x}}{20}
$$

$$
y=\frac{-5 e^{-x}}{2 \theta}
$$

$$
y=\frac{-1}{4} e^{-x}
$$

$$
\begin{equation*}
\text { [b] } y^{\prime \prime}+4 y=\tan 2 x \tag{i}
\end{equation*}
$$

corresponding thomogenous eq-h is

$$
\begin{gather*}
y^{\prime \prime}+H y=0 \tag{2}\\
m^{2}+H=0 \\
m^{2}=-2 \\
m=\sqrt{-2} \\
m= \pm 2 l
\end{gather*}
$$

$$
\begin{aligned}
& C \cdot F \quad y=e^{a x}\left[c_{1} \cos 2 x+c_{2} \sin 2 x\right] \\
&=c_{1} \cos 2 x+c_{2} \sin 2 x \\
& y_{1}=\cos 2 x y_{2}=\sin 2 x \\
& y_{\mathbf{y}}=2 \sin 2 x y_{2}^{\prime}=2 \cos 2 x
\end{aligned}
$$

$$
\begin{aligned}
& \omega\left(y_{1}, y_{2}\right)=\left|\begin{array}{ll}
\cos 2 x & \sin 2 x \\
2 \sin x & 2 \cos 2 x
\end{array}\right| \\
& =2 \cos 2 x \cdot \cos 2 x-\sin 2 x \cdot 2 \sin x \\
& =2(1)=2
\end{aligned}
$$

row,

$$
\begin{aligned}
v_{1} & =\int \frac{-x(x) y_{2}}{y_{1} y_{2}-y_{2} y_{1}} d x \\
& =\int \frac{-\tan 2 x \cdot \sin 2 x}{2} d x \\
& =-1 / 2 \int \tan 2 x \cdot \sin 2 x \\
& =-1 / 2 \int \frac{\sin 2 x}{\cos 2 x} \cdot \sin 2 x d x \\
& =-1 / 2 \int \frac{\sin ^{2} 2 x}{\cos 2 x} d x \\
& =-1 / 2 \int \frac{(1-\cos 2 x)}{\cos 2 x} d x \\
& =-1 / 2 \int\left(\frac{1}{\cos 2 x}-\frac{\cos ^{2} 2 x}{\cos 2 x}\right) d x
\end{aligned}
$$

$$
\begin{aligned}
& =-1 / 2 \int \frac{1}{\cos 2 x}-\cos 2 x d x \\
& =-1 / 2 \int(\sec 2 x-\cos 2 x) d x \\
& =\frac{-1}{2}\left[\frac{\log (\sec 2 x+\tan 2 x)}{2}-\frac{\sin 2 x}{2}\right] \\
& v_{1}=\frac{-1}{4}[(\log \sec 2 x+\tan 2 x)-\sin 2 x] \\
& v_{2}=\int \frac{R(x) y_{1}}{y_{1} y_{2}^{\prime}-y_{2} y_{:}^{\prime}} \cdot d x \\
& =\int \frac{\tan 2 x \cdot \cos 2 x}{2} d x . \\
& =\frac{1}{2} \int \frac{\sin 2 x}{\cos 2 x} \cdot \cos 2 x \cdot d x \\
& =+1 / 2 \int \frac{\sin 2 x}{\cos 2 x} \cdot \cos 2 x \cdot d x \\
& =\frac{+1}{2} \int \sin 2 x \cdot d x \\
& =\frac{-1}{2}\left(\frac{-\cos 2 x}{2}\right) \\
& v_{2}=\frac{-1}{4} \cos 2 x
\end{aligned}
$$

Particalar soln is

$$
\left.\begin{array}{rl}
y= & v_{1} 4,+r_{2} r_{2} \\
= & \left.\frac{-1}{4}[\log \sec 2 x+\tan 2 x) \sin 2 x\right] \\
& +\left(\frac{-1}{4} \cos 2 x\right. \\
& +\sin 2 x \\
= & \frac{-1}{4} \cos 2 x \log (\sec 2 x+\tan 2 x) \\
& +\frac{1}{4} \cos 2 x \cdot \sin 2 x-\frac{1}{4} \cos 2 x \cdot \sin 2 x
\end{array}\right] \begin{aligned}
y= & \frac{-1}{4} \cos 2 x \log (\sec 2 x+\tan 2 x)
\end{aligned}
$$

(c) $\quad y^{\prime \prime}+2 y^{\prime}+5 y=e^{-x} \cdot \sec 2 x$

Solw.
Given $4^{\prime \prime}+2 y^{\prime}+5 y=e^{-x} \cdot \sec 2 x$
The corvesponding given homogenous equation is $y^{\prime \prime}+2 y^{\prime}+5 y^{\prime}=0$:
The Auxuillary equ is

$$
\begin{aligned}
& m^{2}+2 m+5=0 \\
= & \frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-2 \pm \sqrt{4-20}}{2} \\
m= & \frac{-2+4 i}{2}=-1 \pm 2 i
\end{aligned}
$$

The roots ave imaginary C.F is

$$
\begin{aligned}
y & =e^{-x}\left(c \cos 2 x+c_{2} \sin 2 x\right) \\
y & =c_{1} e^{-x} \cdot \cos 2 x+c_{2} e^{-x} \sin 2 x \\
y_{1} & =e^{-x} \cdot \cos 2 x ; \quad y_{2}=e^{-x} \cdot \sin 2 x \\
y_{1}^{\prime} & =e^{-x} \cdot(-\sin 2 x) \cdot 2+\cos 2 x\left(-e^{-x}\right) \\
y_{1}^{\prime} & =-2 e^{-x} \sin 2 x-e^{-x} \cos 2 x \\
y_{2}^{\prime} & =e^{-x}(2 \cos 2 x)+\sin 2 x\left(-e^{-x}\right) \\
& =2 e^{-x} \cdot \cos 2 x-e^{-x} \sin 2 x \\
w\left(y_{1}, y_{2}\right) & =\mid e^{-x} \cos 2 x \\
-2 e^{-x} \sin 2 x- & e^{-x} \cos 2 x \\
& =e^{-x} \cos 2 x- \\
& =e^{-x} \sin 2 x \mid \\
& =\left(e^{-x} \cos 2 x\left[2 e^{-x}-\cos 2 x \cdot 2 e^{-x} 2 x-e^{-x} \sin 2 x\right]\right. \\
& \left.\cos 2 x-e^{-x} e^{-x} \sin 2 x \cdot \cos 2 x\right) \\
& =e^{-x} \cdot \cos 2 x \cdot \sin 2 x\left[-2 e^{-x} \sin 2 x-e^{-x} \cos 2 x\right]
\end{aligned}
$$

$$
\begin{aligned}
& =2 e^{-2 x} \cos ^{2} 2 \cdot x-B^{-2 x} \sin 2 x+ \\
& 2 e^{-x} \sin ^{2} 2 x+e^{-2 x} \cos 2 x \text {. } \\
& =-e^{-x} \cdot \cos 2 x\left[e^{-x}(\sin 2 x-2 \cos 2 x)\right] \\
& +e^{-x} \sin 2 x\left[e^{-x}(\cos 2 x+2 \sin 2 x)\right] \\
& =-e^{-2 x} \cdot \cos 2 x \cdot \sin 2 x+2 e^{-2 x} \cdot \cos ^{2} 2 x \\
& +e^{-2 x} \sin 2 x \cos x+2 e^{-2 x} \cdot \sin ^{2} 2 x \\
& =2 e^{-2 x}\left(\cos ^{2} x+\sin ^{2} 2 x\right) \\
& W\left(y_{1}, y_{2}\right)=-2 e^{-2}-x \\
& v_{1}=\int \frac{-R(x) y_{2}}{y_{1} y_{2}{ }^{\prime}-y_{2} y_{1}^{\prime}} \cdot d x \\
& =\int \frac{e^{-x} \cdot \sec 2 x \cdot e^{-x} \cdot \sin 2 x}{2 e^{-x}} \cdot d x \\
& =\frac{-1}{2} \int \sec 2 x-\sin 2 x \cdot d x \\
& =\frac{-1}{2} \int \frac{1}{\cos 2 x} \cdot \sin 2 x d x \\
& =\frac{-1}{2} \int \tan ^{2} x d x
\end{aligned}
$$

$$
\begin{aligned}
v_{1} & =\frac{-1}{2}\left(-\log \frac{\cos 2 x}{2}\right) \\
v_{2} & =\int \frac{-\pi(x) y_{2}}{\omega\left(y_{1}, y_{2}\right)} d x \\
& =-\int \frac{e^{-x} \cdot \sec 2 x}{2 e^{-2 x}} e^{-x} \cdot \cos 2 x \cdot d x \\
& =\frac{1}{2} \int \frac{1}{\cos 2 x} \times \cos 2 x \cdot d x \\
& =\frac{1}{2} \int d x=\frac{x}{2} \\
v_{2} & =x / 2
\end{aligned}
$$

The Rarticular Soln of (1)

$$
\begin{aligned}
& y=v_{1} y_{1}+v_{2} y_{2} \\
& y=\frac{-1}{4}(-\log \cos 2 x) e^{-x} \cdot \cos 2 x+ \\
& \frac{\frac{x}{2}}{y} e^{-x} \sin 2 x \\
& y=e^{-x}\left(\frac{1}{4} \cos 2 x \cdot \log 2 x+\frac{x}{2} \sin 2 x\right)
\end{aligned}
$$

(d) Given $y^{\prime \prime}+y=\sec x$
corvespording homogenous equ is

$$
y^{9}+4=0
$$

$A \cdot E$ is

$$
\begin{aligned}
& m^{2}+1=0 \\
& m= \pm \hat{e}
\end{aligned}
$$

C-F is

$$
\begin{aligned}
& y=c_{1} \cos x+c_{2} \sin x \\
& y_{1}=\cos x \mid y_{2}=\sin x \\
& u_{1}^{\prime}=-\sin x \\
& w\left(y_{1}, y_{2}\right)=y_{2}^{\prime}=\cos x x+\sin ^{2} x=1 \\
& v_{1}=\int \frac{-R(x) y_{2}}{w\left(y_{1}, y_{2}\right)} \cdot d x \\
&=\int \frac{-\sec x \cdot \sin x}{1} \cdot d x \\
&=-\int \frac{\sin x}{\cos x} \cdot d x \\
&=-\int \tan x d x \\
&=-\log \cos x \\
&=\int \log \cos x \\
&=\int \sec x \cdot \cos x d x \\
& v_{1}
\end{aligned}
$$

$$
\begin{gathered}
=\int d x \\
\quad v_{2}=x \\
y=v_{1} y_{1}+v_{2} y_{2} \\
y=\log (\cos x)+\cos x+x \sin x \text { is the }
\end{gathered}
$$

general soln of (1)
(e) $y^{\prime \prime}+y=x \cdot \cos x$
soln
Given $y^{\prime \prime}+y=\cos x$
corvesponding Lomogenous equ is

$$
\begin{aligned}
& y^{\prime \prime}+y=0 \\
& \text { A.E is } m^{2}+1=0 \\
& m= \pm i \\
& y=e^{e x}\left(c_{1} \cos x+c_{2} \sin x\right) \\
& y_{1}=\cos x \quad y_{2}=\sin x \\
& 4_{1}^{\prime}=\sin x \quad y_{2}^{\prime}=\cos x \\
& w\left(y_{1}, 4_{2}\right)=\left|\begin{array}{ll}
\cos x & \sin x \\
\sin x & \cos x
\end{array}\right|+\cos ^{2} x+ \\
& v_{1}=\int \frac{-R(x) 4_{2}}{w(4,42)} \cdot d x
\end{aligned}
$$

$$
\begin{aligned}
& =\int \frac{-x-\cos x \cdot \sin x}{1} d x \\
& =\int-x \cos x \sin x d x \\
& =\int-x \frac{\sin ^{2} x}{2} d x \\
& =\frac{-1}{2} \int x \sin 2 x d x \\
& =\frac{-1}{2}\left[-x \frac{\cos 2 x}{2}\right] \\
& =-\int \frac{\cos 2 x}{2} d x \\
& =-1 / 2\left[\frac{-x \cos 2 x}{2}\right]+\frac{1}{2} \frac{\sin 2 x}{2} \\
& =\frac{-1}{2}\left[\frac{-x \cos 2 x}{2}+\frac{\sin 2 x}{2}\right] \\
& v_{1}=\frac{-1}{4}\left[-x \cos 2 x+\frac{\sin 2 x}{2}\right] \\
& v_{2}=\int \frac{e(x) 4_{1}}{\omega} \cdot d x=\int \frac{x \cos x \cdot \cos x}{1} d x \\
& =\int x \cos ^{2} x d x=\int \frac{x(1+\cos 2 x)}{2} \cdot d x \\
& =\frac{1}{2} \int(x+x \cos 2 x) d x
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2} \int x d x+\int x \cos 2 x d x \\
& =\frac{1}{2}\left[\frac{x^{2}}{2}\right]+\int x \cos 2 x \cdot d x
\end{aligned}
$$

Consider $\int x \cos 2 x \cdot d x$

$$
\begin{aligned}
\int u d v & =u v-\int v d u \\
& =x\left(\frac{\sin 2 x}{2}\right)+\int \frac{\sin 2 x}{2} d x \\
& =\frac{x}{2} \sin 2 x+\frac{1}{2}\left(-\frac{\cos 2 x}{2}\right) \\
& =\frac{x}{2} \sin 2 x-\frac{1}{4} \cos 2 x \\
\Rightarrow & =\frac{1}{2} \frac{x^{2}}{2}+\frac{1}{2}\left[\frac{x}{2} \sin 2 x-\frac{1}{4} \cos 2 x\right] \\
v_{2} & =\frac{x^{2}}{4}+\frac{x}{4} \sin 2 x-\frac{1}{8} \cos 2 x
\end{aligned}
$$

The Particular sols is

$$
\begin{aligned}
y= & v_{1} y_{1}+v_{2} y_{2} \\
& =\frac{-1}{x}\left[-x \cos 2 x+\frac{\sin 2 x}{2}\right] \cos 2 x+ \\
& {\left[\frac{x^{2}}{x}+\frac{x}{x} \sin 2 x-\frac{1}{8} \cos 2 x\right] \cdot \sin x }
\end{aligned}
$$

$$
\begin{aligned}
y= & \cos x \cdot\left(\frac{x}{x} \cos 2 x-\frac{\sin 2 x}{8}\right) \\
& +\left[\frac{x^{2}}{4}+\frac{x}{4} \sin 2 x-\frac{1}{8} \cos 2 x\right] \sin x \\
= & \frac{x}{4} \cos x \cdot \cos 2 x-\frac{\cos x \cdot \sin 2 x}{8} \\
& +\frac{x^{2}}{4} \sin x+\frac{x}{4} \sin 2 x \cdot \sin x \\
& +\frac{1}{8}[\sin 2 x \cdot \cos x-\sin x \\
& +\frac{\left.x^{2} x \cdot \cos 2 x\right]}{4} \sin x \\
& {[\cos x \cdot \cos 2 x+\sin x \sin 2 x] } \\
= & \frac{1}{4}\left[x(\cos 2 x-x)+x^{2} \sin x-\right. \\
& {\left[\frac{1}{2} \sin 2 x-x\right] } \\
= & \frac{x^{2}}{4} \cdot \sin x+\frac{x}{4} \cos x-\frac{\sin x}{8} \\
= & \frac{1}{4}\left[x^{2} \sin x+x \cos x-\frac{\sin x}{2}\right]
\end{aligned}
$$

Prom Find the Particular soln by using the method of Variation of Parameter

$$
y^{\prime \prime}-2 y^{\prime}-3 y=6+x e^{-x}
$$

Soln.
Given $\quad 4^{\prime \prime}-2 y^{\prime}-3 y=64 x e^{-x}$
corvesponding homogenous equation is

$$
4^{\prime \prime}-2 y^{\prime}-3 y=0
$$

The $A \cdot E$ is $m^{2}-2 m-3=0$

$$
m=-1+3
$$

The C.F is

$$
\begin{aligned}
y & =c_{1} e^{-x}+c_{2} e^{3 x} \\
y_{1} & =e^{x}\left|\begin{array}{r}
y_{2}=e^{3 x} \\
y_{1}^{\prime}
\end{array}=e^{x} \quad \begin{array}{r}
y_{2}^{\prime}=3 e^{3 x} \\
y_{1}^{\prime \prime}=e^{x}
\end{array}\right| \begin{array}{l}
y_{2}^{\prime \prime}=9 e^{3 x} \\
w\left(y_{1}, y_{2}\right)
\end{array}=\left|\begin{array}{ll}
e^{x} & e^{3 x} \\
-e^{x} & 3 e^{3 x}
\end{array}\right| \\
& =e^{x}\left(3 e^{3 x}\right)-\left(-e^{x}\right)\left(e^{-3 x}\right) \\
& =3 e^{2 x}+e^{2 x}=k e^{2 x} \\
& =\int \frac{-R(x) y_{2}}{w\left(y_{1} y_{2}\right)} \cdot d x
\end{aligned}
$$

$$
\begin{aligned}
& =\int \frac{-64 x e^{-x}}{4 e^{2 x}} \cdot e^{5 x} \cdot d x \\
& =\int \frac{-16 x e^{-x}}{e^{2 x}} \cdot e^{3 x} \cdot d x \\
& =-16 \int \frac{x e^{-x+3 x}}{e^{2 x}} d x \\
& =-16 \int \frac{x \cdot e^{2 x}}{e^{2 x}} d x=-16\left(\frac{x^{2}}{2}\right)=-8 x^{2} \\
& v_{1}=-8 x^{2} \\
& v_{2}=\int \frac{\pi(x) y_{1}}{v\left(y_{1}, y_{2}\right)} d x \\
& =\int \frac{64 x e^{-x}}{4 e^{2 x}} \cdot e^{-x} \cdot d x \\
& =16 \int \frac{x \cdot e^{-2 x}}{e^{2 x}} \cdot d x=16 \int x e^{-2 x} e^{-2 x} d x \\
& =16 \quad \int x e^{-k x} \cdot d x \\
& =16\left[x \cdot \frac{e^{-x x}}{4}\right]-16 \int \frac{e^{-4 x}}{-x} d x \\
& =\frac{-16}{4}\left(x e^{-4 x}\right)+4 \int e^{-4 x} \cdot d x
\end{aligned}
$$

$$
\begin{aligned}
& =-4\left(x e^{-4 x}\right)+4\left(\frac{e^{-4 x}}{x}\right) \\
& =-4 x e^{-4 x}+e^{-4 x} \\
v_{2} & =-k x e^{-4 x}\left(x+\frac{1}{4}\right)
\end{aligned}
$$

The qeneral soln is

$$
\begin{aligned}
y & =v_{1} y_{1}+v_{2} y_{2} \\
& =\left(-8 x^{2}\right)\left(e^{-x}\right)+\left[-4 e^{-x x}\left(x+\frac{1}{4}\right)\right] e^{3 x} \\
& =-8 x^{2} \cdot e^{-x}-4 e^{-x}(x+1 / x) \\
& =-4 e^{-x}\left(\left(x+\frac{1}{4}\right)+2 x^{2}\right) \\
& =-4 e^{-x}\left[\frac{4 x+1+8 x^{2}}{4}\right] \\
y & =-e^{-x}\left[4 x+8 x^{2}+1\right)
\end{aligned}
$$

Dh= Find the general Sohr of

$$
\left(x^{2}-1\right) y^{\prime \prime}-2 x y^{\prime}+2 y=\left(x^{2}-1\right)^{2} .
$$

Solr.
Given $\left(x^{2}-1\right) y^{\prime \prime}-2 x y^{\prime}+2 y=\left(x^{2}-1\right)^{2}$-(1) corvesponding to the Rompmens equ

$$
\begin{equation*}
x\left(x^{2}-1\right) y^{\prime \prime}-2 x y^{\prime}+2 y=0 \tag{2}
\end{equation*}
$$

$4_{1}=x$ is the soln of eqn (2)

$$
y=x_{i} y^{\prime}=1 \quad \text { and } v^{\prime \prime}=0
$$

Lot $U_{2}=V Y_{1}$ be another indepdent Sotr of 2 Where

$$
\begin{aligned}
v & =\int \frac{1}{41^{2}} e^{-\int \rho(x) d x} d x \\
& =\int \frac{1}{x^{2}} e^{-\int \frac{-2 x}{x^{2}-1} d x} d x \\
& =\int \frac{1}{x^{2}} e^{\int \frac{2 x}{x^{2}-1} d x} \cdot d x \\
& =\int \frac{1}{x^{2}} e^{\log \left(2 x^{2}-1\right) d x} \\
& =\int \frac{1}{x^{2}}\left(x^{2}-1\right) d x \\
& =\int\left(1-\frac{1}{x^{2}}\right) d x \\
& =\int d x-\int \frac{1}{x^{2}} d x \\
& =x-\left[\frac{x^{-2+1}}{-2+1}\right]
\end{aligned}
$$

$$
\begin{aligned}
& v=x+\frac{1}{x} \\
& u_{2}=v y_{1} \Rightarrow\left(x+\frac{1}{x}\right) x=x^{2}+1
\end{aligned}
$$

$y_{2}=x^{2}+1$ is the soln of eqn (D)
The general soln of eqn

$$
\begin{aligned}
& y=c_{1} y_{1}+c_{2} y_{2} \\
& y_{2}=c_{1} x+c_{2}\left(x^{2}+1\right)
\end{aligned}
$$

tet,

$$
\begin{aligned}
y_{1} & =x \\
y_{1}^{\prime} & =1 \left\lvert\, \begin{array}{cc}
u_{2} & =x^{2}+1 \\
y_{2} & =2 x \\
w\left(y_{1}, y_{2}\right) & =\left|\begin{array}{cc}
x & x^{2}+1 \\
1 & 2 x
\end{array}\right| \\
& =\frac{2 x^{2}-\phi-\left(x^{2}+1\right)}{v_{1}} \\
& =\int \frac{-R(x) y_{2}}{w\left(x_{1}^{2}-x_{2}^{2}-1\right.} d x \\
\left.v_{1}\right) \\
& =\int \frac{-1\left(x^{2}-1\right)}{x^{2}-1}\left(x^{2}+1\right) d x
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& =\int-\left(x^{2}+1\right) d x=-\int x^{2} d x+\int d x \\
v_{1} & =-\left(\frac{x^{3}}{3}+x\right) \\
v_{2} & =\int \frac{\pi(x) y}{w\left(4,4_{2}\right)} \cdot d x \\
& =\int \frac{\left(x^{2}-1\right)}{x^{2}-1}(x) d x=\frac{x^{2}}{2} \\
u_{2} & =\frac{x^{2}}{2}
\end{aligned}
$$

The Rarticular Soln is

$$
\begin{aligned}
y & =v_{1} y_{1}+v_{2} y_{2} \\
& =-\frac{\left(\frac{x^{3}}{3}+x\right) x+\frac{x^{2}}{2}\left(x^{2}+1\right)}{} \\
& =\frac{-x^{4}}{3}-x^{2}+\frac{x^{4}}{2}+\frac{x^{2}}{2} \\
& =\frac{-2 x^{4}+3 x^{4}}{6}-\frac{2 x^{2}+x^{2}}{2}
\end{aligned}
$$

$$
y=\frac{x^{4}}{6}-\frac{x^{2}}{2} \text { is the particular }
$$

Soth of (x)
$y=c_{1} x+c_{2}\left(x^{2}+1\right)$ is a genera) Soln of $x^{2}-1$

$$
y^{\prime \prime}-2 x y^{\prime}+2 y=0
$$

Particular soln of $y=v_{1} y_{1}+v_{2} y_{2}$ is

$$
y=\frac{x^{4}}{6}-\frac{x^{2}}{2}
$$

The general soln of een (1)

$$
y=c_{1} x+c_{2}\left(x^{2}+1\right)+\frac{x^{4}}{6}-\frac{x^{2}}{2}
$$

Rh: Find the qeeneral soln of

$$
\left(x^{2}+x\right) 4^{\prime \prime}+\left(2-x^{2}\right) y^{\prime}-(2+x) y=x(x+1)^{2}
$$

Soln-
Given

$$
\begin{equation*}
\left(x^{2}+x\right) y^{\prime \prime}+\left(2-x^{2}\right) y^{\prime}-(2+x) y=x(x+1)^{2} \tag{i}
\end{equation*}
$$

Corvesponding to the homorn equ.

$$
\begin{align*}
& \left(x^{2}+x\right) y^{\prime \prime}+\left(2-x^{2}\right) y^{\prime} \Phi(2+x) y=0 \\
& x^{2} e^{x}+x e^{x}+2 e^{x}-x^{2} e^{x}-2 y e^{x}-x e^{x} . \tag{-2}
\end{align*}
$$

$y_{1}=e^{x}$ is the soln of eqn (2)

$$
\left[y_{1}=e^{x}, y_{1}^{\prime}=e^{x}, y_{1}^{\prime \prime}=e^{x}\right]
$$

let $y_{2}=r_{4}$, be another independent soln of the equation (2), where $\quad v=\int \frac{1}{4^{2}} e^{-\int p(x) d x} \cdot d x$

$$
\begin{aligned}
& =\int \frac{1}{\left(e^{x}\right)^{2}} e^{-\int\left(\frac{2-x^{2}}{x^{2}+x}\right)} d x d x \\
& \int \frac{1}{\left(e^{x}\right)^{2}}
\end{aligned} e^{\int \frac{x^{2}-2}{x(x+1)} d x} d x . d x . l
$$

consider,

$$
\begin{aligned}
& \frac{x^{2}-2}{x(x+1)}=\frac{A}{x}+\frac{B}{x+1}+C \\
& \frac{x^{2}-2}{x(x+1)}=\frac{A(x+1)+B(x)+C(x)(x+1)}{x(x+1)} \\
& x^{2}-2=A(x+1)+B(x)+C(x)(x+1) \\
& \text { Put } x=0 \Rightarrow \quad \Rightarrow-2=A \\
& \text { Put } x=-1 \Rightarrow-1=-2 \\
& \text { Put } x=1 \Rightarrow 1-2=A(2)+B(1)+C(1)(2) \\
& \text { Put } \quad 2 A+B+2 C=-1 \\
& 2(-2)+1+2 C=-1
\end{aligned}
$$

$$
\begin{aligned}
& 2 c=2 \\
& c=1 \\
& =\int \frac{1}{e^{2 x}} e^{\int\left(\frac{-2}{x}+\frac{1}{x+1}+1\right)} d x \\
& =\int \frac{1}{e^{2 x}} e^{\int \frac{-2}{x} d x} \cdot e^{\int \frac{1}{x+1} d x} \cdot e^{\int d x} \cdot d x \\
& =\int \frac{1}{e^{2 x}} \cdot e^{-2 \int \frac{d x}{x}} \cdot e^{\log (x+1)} \cdot e^{x} \cdot d x \\
& =\int \frac{1}{e^{2 x}} \cdot e^{-2 \log x} \cdot e^{\log (x+1)} \cdot e^{x} \cdot d x \\
& =\int \frac{1}{e^{2 x}} e^{\log x^{-2}} e^{\log (x+1)} \cdot e^{x} \cdot d x \\
& =\int \frac{1}{e^{2 x}} \cdot \frac{1}{x^{2}}(x+1) \cdot e^{x} \cdot d x \\
& =\int \frac{1}{e^{x}} \cdot \frac{1}{x^{2}}(x+1) d x \\
& =\int \frac{1}{e^{x}} \cdot\left(\frac{1}{x}+\frac{1}{x^{2}}\right) d x \\
& =\int \frac{1}{x e^{x}} d x+\int \frac{1}{e^{x}}\left(\frac{1}{x^{2}}\right) d x \\
& =\int e^{-x}\left(\frac{1}{x}\right) d x+\int \frac{e^{-x}}{x^{2}} d x
\end{aligned}
$$

$$
\begin{aligned}
& =\int \frac{e^{-x}}{x} d x+\left[e^{-x}\left(\frac{1}{x}\right)-\int \frac{-1}{x}\left(-e^{-x}\right) d x\right] \\
& =\int \frac{e^{-x}}{x} d x+\left[\frac{-e^{-x}}{x}\right]-\int \frac{e^{-x}}{x} d x \\
v & =\frac{-e^{-x}}{x} \\
y_{2} & =V_{y_{1}}=\frac{-e^{-x}}{x} e^{x}=\frac{-1}{x}
\end{aligned}
$$

$4_{2}=\frac{-1}{x}$ is the soln of eqn (2)
The general. Soln of eqn (2)

$$
y=c_{1} e^{x}+c_{2}(-1 / x)
$$

Let $y_{1}=e^{x}$ and $y_{2}=\frac{-1}{x}=-x^{-1}$

$$
\begin{aligned}
y_{2}^{\prime}=-\left(-1 x^{-1-1}\right) & =+1 x^{-2} \\
& =\frac{+1}{x^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& y_{1}{ }^{\prime}=e^{x} \& y_{2}^{\prime}=\frac{1}{x^{2}} \\
& w\left(y_{1}, y_{2}\right)=\left|\begin{array}{cc}
e^{x} \frac{-1}{x} \\
e^{x} & 1 / x^{2}
\end{array}\right| \\
&=e^{x} \cdot \frac{1}{x^{2}}+\frac{e^{x}}{x}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{e^{x}}{x^{2}}+\frac{e^{x}}{x} \\
& =e^{x}\left(\frac{1}{x^{2}}+\frac{1}{x}\right)=e^{x}\left(\frac{1+x}{x^{2}}\right) \\
& v_{1}=\int \frac{-R(x) y_{2}}{w\left(y_{1}, y_{2}\right)} d x \\
& =\int \frac{-(x+1)}{e^{x}\left(\frac{1}{x^{2}}+\frac{1}{x}\right)} \cdot(-1 / x) d x \\
& =\int \frac{-(x+1)}{e^{x}\left(\frac{1+x}{x^{2}}\right)}(-1 / x) d x \\
& =\int \frac{1}{e^{x}}\left(\frac{x+1}{x}\right)\left(\frac{x^{2}}{(x+1)}\right) d x \\
& =\int \frac{1}{e^{x}} x \cdot d x \\
& v_{1}=-x e^{-x}-e^{-x} \\
& v_{1}=-e^{-x}(x+1) \\
& v_{2}=\int \frac{R(x) y_{1}}{\omega\left(y_{1}, y_{2}\right)} \\
& =\int \frac{(x+1) e^{x}}{e^{x}\left(1+x / x^{2}\right)}-d x
\end{aligned}
$$

$$
\begin{aligned}
& =\int x^{2} d x=\frac{x^{3}}{3} \\
& v_{2}=\frac{x^{3}}{2}
\end{aligned}
$$

The Particular soin of eqn (1)

$$
\begin{aligned}
y & =v_{1} u_{1}+v_{2} y_{2} \\
& =-e^{-x}(x+1) e^{x}+\frac{x^{3}}{3}(-1 / x) \\
y & =-(x+1)-\frac{x^{2}}{3}
\end{aligned}
$$

The qeneral soln of the eqn(1) is

$$
y=c_{1} e^{x}+c_{2}\left(\frac{-1}{x}\right)-(x+1)-\frac{x^{2}}{3}
$$

Ph=

$$
y^{\prime \prime}+y=\sec x \cdot \tan x
$$

Soln:

$$
\begin{equation*}
4^{\prime \prime}+y=\sec x \cdot \tan x \tag{1}
\end{equation*}
$$

corvesponding to the Lomogenous equ is

$$
\begin{equation*}
4^{(1)}+y=0 \tag{2}
\end{equation*}
$$

$A \cdot E$ is $\quad m^{2}+1=0$

$$
\begin{aligned}
& m^{2}=-1 \\
& m= \pm i
\end{aligned}
$$

$\therefore C \cdot F$ is

$$
\begin{aligned}
& y=e^{\alpha x}\left[c_{1} \cos x+c_{2} \sin x\right] \\
& y_{1}=\cos x \quad y_{2}=\sin x \\
& y_{1}^{\prime}=-\sin x \quad u_{2}^{\prime}=\cos x . \\
& \omega\left(y_{1}, 1 y_{2}\right)=\left|\begin{array}{cc}
\cos x & \sin x \\
-\sin x & \cos x
\end{array}\right| \\
& \omega=\cos ^{2} x+\sin ^{2} x=1 \\
& v_{1}=\int \frac{-R(x) y_{2}}{\omega\left(y_{1}, y_{2}\right)} \cdot d x \\
& =\int \frac{-\sec x \cdot \tan x \cdot \sin x}{1} \cdot d x \\
& =-\int \frac{1}{\cos x} \frac{\sin x}{\cos x} \cdot \sin x \cdot d x \\
& =-\int \frac{\sin ^{2} x}{\cos ^{2} x} d x=-\int \tan ^{2} x d x \\
& =\int-\left(\sec ^{2} x-1\right) d x \\
& =\int-\sec ^{2} x \cdot d x-\int d x \\
& =-\tan x+x
\end{aligned}
$$

$$
\begin{aligned}
v_{1} & =x-\tan x \\
v_{2} & =\int \frac{R(x) 4,}{44_{1} 4^{\prime}-4_{2} 4_{1}^{\prime}} \cdot d x \\
& =\int \frac{\sec x \cdot \tan x}{1} \cdot \cos x d x \\
& =\int \frac{\tan x}{1} d x \cdot-\frac{\sin x}{\cos x} d x \\
v_{2} & =-\log \cos x \cdot d x \\
y & =v_{1} y_{1}+v_{2} 4_{2} \\
y & =(x-\tan x) \cos x+(-\log \cos x) \cdot \sin x \\
y & =x \cos x-\tan x \cdot \cos x-\log \cos x \cdot \sin x \\
y & =x(\cos x-\sin x-\sin x \cdot \log \cos x)
\end{aligned}
$$

Unit -II

A review. of Power Series:-
Explain Rower Series and its Convergence.
(i) An infinite series of the form $\sum_{n=0}^{\infty} a_{n} x^{n}=a_{0}+a_{1} x+a_{2} x+$ $\cdots+a_{n} x^{n} \ldots$ is called a Power series in x.
(ii) $\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$ is a. Po weer series in $\left(x-x_{0}\right)$
(ii) The series $\sum_{n=0}^{\infty} a_{n} x^{n}$ is said to be converges at a point x if $\lim _{m \rightarrow \infty} \sum_{n=0}^{m} a_{n} x^{n}$ exits and in this case the sum of the Series is the value of the limit
(iv) The arrangement of their Pt of Convergence, all Power series in x fall into one or another (or) three major catagories.
(i) $\sum_{n=0}^{\infty} n!x^{n}=1+x+2 x^{2}+6 x^{3}+\cdots$
(ii) $\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots$.
(iii) $\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+\cdots$

The series (i) will diverges $\forall x \neq 0$.
The series (ii) will converges $\forall x$ The series (iii) will converges for $|x|<1$ and diverge for $|x|>1$

Certain Series of types converges for all values of x in $|x|<\pi \quad(\pi$ is radius of converges)

Suppose the series

$$
\begin{aligned}
& f(x)=\sum_{n=0}^{\infty} a_{n} x^{n} \\
& \text { ie }) f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}+\cdots \\
& f^{\prime}(x)=a_{1}+2 a_{3} x+3 a_{3} x^{2}+4 a_{4} x^{3}+\cdots \\
& f^{\prime \prime}(x)=2 a_{2}+6 a_{3} x+12 a_{4} x^{2}+\cdots \\
& f^{\prime \prime \prime}(x)=6 a_{3}+24 a_{4} x+\cdots \\
& f^{\prime \prime}(0)=a_{0} \\
& f^{\prime}(0)=a_{1} \Rightarrow a_{1}=\frac{f^{\prime}(0)}{1!} \\
& f^{\prime \prime}(0)=2 a_{2} \Rightarrow a_{2}=\frac{f^{\prime \prime}(0)}{2!}
\end{aligned}
$$

Similarly,

$$
a_{3}=\frac{f^{\prime \prime \prime}(0)}{3!} \text {, etc }
$$

Now,

$$
\begin{aligned}
f(x) & =f(0)+\frac{f^{\prime}(0)}{1!} x+\frac{f^{\prime}(0)}{2!} x^{2} \\
& +\frac{f^{\prime \prime \prime}(0)}{3!} x^{3}+\cdots+\frac{f^{n}(0)}{n!} x^{n}+\cdots
\end{aligned}
$$

$$
\therefore \quad a_{n}=\frac{f^{n}(0)}{n!}
$$

Ratio test:-
Let $\sum_{n=0}^{\infty} a_{n}$ he a series of nonzero constants. Then wee know that, if the limit $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=L$. exists, then the ratio test asserts that the series Converges if $L<1$. and diverges if $L>1$.

In the case the pourer series $\sum_{n=0}^{\infty} a_{n} x^{n}$, we have

$$
R=\lim _{n \rightarrow \infty}\left|\frac{a_{n}}{a_{n+1}}\right|
$$

(1) use ratio test to verify that $R=0, R=\infty, R=1$ for the Series (i) $\sum_{n=0}^{\infty} n!x^{n}$
(ii) $\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$
(iii) $\sum_{n=0}^{\infty} x^{n}$.

Sorn:
(i) Consider the Series.

$$
\sum_{n=0}^{\infty} n!x^{n}
$$

we have $a_{n}=n$!

$$
\begin{aligned}
\text { we } & a_{n+1}=(n+1)! \\
\pi & =\lim _{n \rightarrow \infty}^{a_{n+1}}\left|\frac{a_{n}}{}\right| \\
& =\lim _{n \rightarrow \infty}\left|\frac{n!}{(n+1)!}\right| \\
& =\lim _{n \rightarrow \infty}\left|\frac{n!}{n!(n+1)}\right| \\
& =\lim _{n \rightarrow \infty}\left|\frac{1}{n+1}\right| \\
& =0
\end{aligned}
$$

$$
\begin{aligned}
\text { (ii) } \begin{aligned}
& a_{n}=\frac{1}{n!} \\
& a_{n+1}=\frac{1}{(n+1)!} \\
R= & \lim _{n \rightarrow \infty}\left|\frac{a_{n}}{a_{n+1}}\right| \\
= & \lim _{n \rightarrow \infty}\left|\frac{(n+1)!}{n!}\right| \\
= & \lim _{n \rightarrow \infty}\left|\frac{n!(n+1)}{n!}\right| \\
& \left|\lim _{n \rightarrow \infty}\right| n+1 \mid \\
& \\
= & \infty \rightarrow \infty
\end{aligned} \\
=
\end{aligned}
$$

(iv)

$$
\begin{aligned}
& a_{n+1}=1 \\
& \therefore \quad r=\lim _{n \rightarrow \infty}\left|\frac{a_{n}}{a_{n+1}}\right| \\
&=\lim _{n \rightarrow \infty}\left(\frac{1}{1}\right) \\
&=1
\end{aligned}
$$

Pb: (2) If P is not zero or a tue integer. Show that the series

$$
\sum_{n=1}^{\infty} \frac{p(p-1)(p-2) \cdots(p-n+1)}{n!} x^{n}
$$

converges for $|x|<1$ and diverges for $|x|>1$.

Sols:
Consider the series

$$
\sum_{n=1}^{\infty} \frac{p(p-1)(p-2) \cdots(p-n+1)}{n!} x^{n}
$$

we have,

$$
\begin{aligned}
a_{n} & =\frac{p(p-1)(p-2) \cdots(p-n+1)}{n!} \\
a_{n+1} & =\frac{p(p-1)(p-2) \cdots(p-n+1)(p-n)}{(n+1)!} \\
& =\frac{(n+1)!}{n!(p-n)} \\
& =\frac{n+1}{p-n}
\end{aligned}
$$

$$
\begin{aligned}
R & =\lim _{n \rightarrow \infty}\left|\frac{a_{n}}{a_{n+1}}\right| \\
& =\lim _{n \rightarrow \infty}\left|\frac{n+1}{p-n}\right| \\
& =\lim _{n \rightarrow \infty}\left|\frac{n(1+1 / n)}{n(P / n-1)}\right| \\
& =\frac{1}{1}=1
\end{aligned}
$$

Hence the series Converges for $|x|<1$ and diverges for $|x|>1$

Pp:(3) we have $1+x+x^{2}+\cdots+x^{n}=\frac{1-x^{n+1}}{1-x}$ of $x \neq 1$ we this formula to show $\frac{1}{1-x}=1+x+x^{2}+\cdots$ and

$$
\frac{1}{1+x}=1-x+x^{2}-x^{3}+\cdots \text { Also }
$$

show that $\log (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3} \cdots$ and $\tan ^{-1} x=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\cdots$

Sol:
Given $1+x+x^{2}+\cdots+x^{n}=\frac{\left(-x^{n+1}\right.}{1-x}$ for $|x|<1$.

$$
\begin{align*}
& \lim _{n \rightarrow \infty} x^{n+1}=0 . \\
& \lim _{n \rightarrow \infty}\left(1+x+x^{2}+\cdots+x^{n}\right)=\lim _{n \rightarrow \infty} \frac{1+x^{n+1}}{1-x} \\
& 1+x+x^{2}+\cdots=\frac{1}{1-x} \\
& \frac{1}{1-x}=1+x+x^{2}+x^{3}+\cdots \tag{1}
\end{align*}
$$

Replace x by $-x$ in eqn(1)

$$
\begin{equation*}
\frac{1}{1-x}=1-x+x^{2}-x^{3}+. \tag{2}
\end{equation*}
$$

Inteqrate (》, wee get

$$
\begin{aligned}
& \int \frac{d x}{1+x}=\int\left(1-x+x^{2}-x^{3}+\cdots\right) d x \\
& \log (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots
\end{aligned}
$$

Replace x by x^{2} in (2), we get

$$
\begin{aligned}
& \frac{1}{1+x^{2}}=1-x^{2}+x^{4}-x^{6}+\cdots \\
& \int \frac{d x}{1+x^{2}}=\int\left(1-x^{2} 7 x^{4}-x^{6}+\cdots\right) d x \\
& \tan ^{-1} x=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\cdots
\end{aligned}
$$

10. Find Power Series for $\frac{1}{(1+x)^{2}}$ from the series for $\frac{1}{1-x}$
(a) by squaring
(b) by differed ciating

Sol:
(a) we know that

$$
\frac{1}{1-x}=1+x+x^{2}+x^{3}+\cdots \rightarrow(1)
$$

squaring (1), we get

$$
\begin{aligned}
\frac{1}{(1-x)^{2}}= & \left(1+x+x^{2}+x^{3}+\cdots\right)^{2} \\
= & \left(1+x+x^{2}+x^{3}+\cdots\right)\left(1+x+x^{2} \cdots\right) \\
= & \left(1+x+x^{2}+\cdots\right)\left(x+x^{2}+x^{3}+\cdots\right) \\
& \left(x^{2}+x^{3}+x^{4}+\cdots\right)+\cdots \\
= & 1+2 x+3 x^{2}+4 x^{3}+\cdots
\end{aligned}
$$

(b) Differentiating (1) we ged

$$
\frac{1}{(1-x)^{2}}=1+2 x+3 x^{2}+4 x^{3}+\cdots
$$

$1 / 8177$
Power series solution for first order different trial Equation

Problem:
(1) Find the Power series Solution for the differential equation $y^{\prime}=y$.

Soln:
Given $y^{\prime}=y$
Assume (1) has a power series
Solution

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
\text { (i.e) } \quad y & =a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots \\
y^{\prime} & =a_{1}+2 a_{2} x+3 a_{3} x^{2}+\cdots \\
\text { (1) } \Rightarrow a_{1} & +2 a_{2} x+3 a_{3} x^{2}+4 a_{4} x^{3}+\cdots \\
& =a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots
\end{aligned}
$$

Equation the corresponding coefficients.

$$
\begin{aligned}
a_{1} & =a_{0} \quad \Rightarrow \quad a_{1}=\frac{a_{0}}{1!} \\
2 a_{2} & =a_{1} \\
2 a_{2} & =a_{0} \\
a_{2} & =\frac{a_{0}}{2}=\frac{a_{0}}{2!} \\
3 a_{3} & =a_{2} \\
3 a_{3} & =\frac{a_{0}}{2!} \\
3 a_{3} & =\frac{a_{0}}{2!3}=\frac{a_{0}}{3!}
\end{aligned}
$$

$$
\begin{aligned}
H_{1} a_{4} & =a_{3} \\
a_{4} & =\frac{a_{3}}{4}=\frac{1}{4} \frac{a_{0}}{3!}=\frac{a_{0}}{4!}
\end{aligned}
$$

\therefore The Power series solution of
(1) in

$$
\begin{aligned}
& y=a_{0}+\frac{a_{0}}{1!} x+\frac{a_{0}}{2!} x^{2}+\frac{a_{0}}{3!} x^{3}+\frac{a_{0}}{4!} x^{4}+\cdots \\
& y=a_{0}\left[1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots\right] \\
& \quad(-e) y=a_{0} e^{x}
\end{aligned}
$$

Direct method

$$
\begin{array}{rl}
& y^{\prime}=y \\
\Rightarrow & \frac{d y}{d x}=y \\
\Rightarrow & \frac{d y}{y}=d x \\
\Rightarrow & \int \frac{d y}{y}=\int d x \\
& \log y=x+\log c \\
& \log y-(\log c=x \\
& \log (y / c)=x \\
& y=e^{x} \\
y & y=c \cdot e^{x}
\end{array}
$$

$p b:$ Find the expression of $(1+x)^{p}$, where P is arbitrary constant by using power series solution of differential equation (D.E)?

Sorn Let $y=(1+x)^{p}$

$$
\begin{align*}
u^{\prime} & =P(1+x)^{p-1}(1) \\
(1+x) y^{\prime} & =p(1+x)^{p-1}(1+x)^{\prime} \\
\Rightarrow(1+x) u^{\prime} & =P(1+x)^{\prime} \\
\Rightarrow & (1+x) u^{\prime}=P y \tag{a}
\end{align*}
$$

Also $y(0)=1$.
$y=(1+x)^{P}$ is a Particular soln of the differential equation (2) Assume that (2) has power series

$$
\begin{aligned}
& y=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots+a_{n} x^{n}+\cdots \\
& y^{\prime}=a_{1}+2 a_{2} x+3 a_{3} x^{2}+\cdots \cdot+(n+1) a_{n}+1 x^{x^{n}}+\ldots \\
& x y^{\prime}=a_{1} x+2 a_{2} x^{3}+3 a_{3} x^{3}+\cdots+\cdots \\
& n a_{n} x^{n}+\cdots \\
& \text { (1) } \Rightarrow\left(a_{1}+2 a_{2} x+3 a_{3} x^{2}+\cdots\right) \\
& +\left(a_{1} x+2 a_{2} x^{2}+\cdots\right)=p\left(a_{0}+a_{1} x+a_{2} x^{2}+\cdots\right) \\
& a_{1}+\left(2 a_{2}+a_{1}\right) x+\left(3 a_{3}+2 a_{2}\right) x^{3}+\cdots \cdot \\
& +\left[(n+1) a_{n+1}+n a_{n}\right] x^{n}+\ldots . \\
& =a_{0} p+a_{1} p x+a_{2} p x^{2}+\cdots+p a_{n} x^{n}+\ldots \\
& \text { Solution }
\end{aligned}
$$

$$
\begin{aligned}
{\left[\begin{array}{ll}
y(0) & \left.=a_{0}, y(0)=1\right] \\
a_{0} & =1 \\
a_{1} & =a_{0} p_{1} \Rightarrow a_{1}=1 \cdot p \\
a_{1} & =\frac{p}{1!} \\
2 a_{2}+a_{1} & =a_{1} p \\
2 a_{2} & =a_{1} p-a_{1} \\
& =a_{1}(p-1) \\
a_{2} & =a_{1}(p-1) \\
a_{2} & =\frac{p(p-1)}{2!} \\
3 a_{3}+2 a_{2} & =a_{2} p \\
3 a_{5} & =a_{2} p-2 a_{2} \\
a_{3} & =\frac{p(p-1)(p-2)}{3!} \\
& =\frac{a_{2}(p-2)}{3}
\end{array}\right.} \\
a_{2}(p-2) \\
a_{3}
\end{aligned}
$$

$$
a_{n}=\frac{P(P-1)(p-2) \cdots(p-n+1)}{n!}
$$

the Dower series sols of (11) is

$$
\begin{align*}
& y=P+\frac{P x}{1!}+\frac{P(P-D)}{2!} x^{2}+\cdots \\
& \quad+\frac{P(P-1)(P-2) \cdots(P-n+1)}{n!} \tag{3}
\end{align*}
$$

so:
From (2) and (3)

$$
\begin{aligned}
(1+x)^{P} & =1+\frac{P}{1!} x+\frac{P(P-1)}{2!} x^{2} \\
& +\frac{P(P-1)(P-2)}{3!} x^{3}+\cdots \\
& +\frac{P(P-1)(P-2) \cdots(P-n+1)}{n!} x_{n}^{n} \ldots
\end{aligned}
$$

bra Find a power series solution of the form $\sum a_{n} x^{n}$ of
(6) $y^{\prime}+y=1$
(ii) $x y^{\prime}=y$
(iii) $y^{\prime}=2 x y$. Solve the equation directly, and Explain any
discrepancies that axis.
Soln:-
O(i) Given

$$
\begin{equation*}
y^{\prime}+y=1 \tag{11}
\end{equation*}
$$

Assume (1) has a power series Solution

$$
\begin{aligned}
& y=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots \\
& y^{\prime}=a_{1}+2 a_{2} x_{1}+3 a_{3} x^{2}+\cdots
\end{aligned}
$$

From (c) $y^{\prime}+y=1$

$$
\begin{gathered}
\left(a_{1}+2 a_{2} x+3 a_{3} x^{2}+\cdots\right)+\left(a_{0}+a_{1} x+a_{2} x^{2}+\ldots\right) \\
=1 \\
\left(a_{0}+a_{1}\right)\left(a_{1}+2 a_{2}\right) x+\left(3 a_{3}+a_{2}\right) x^{2} \\
+\cdots=1+0 x+0 x^{2}+\cdots
\end{gathered}
$$

comparing the coefficients

$$
\begin{aligned}
a_{0}+a_{1} & =1 \\
a_{1} & =1-a_{0} \quad a_{1}=-\left(a_{0}+-1\right) \\
a_{1}+2 a_{2} & =0 \\
2 a_{2} & =-a_{1} \\
a_{2} & =\frac{a_{1}}{2} \\
& =\frac{2\left(1-a_{0}\right)}{2}
\end{aligned}
$$

$$
\begin{aligned}
& a_{2}=\frac{a_{0}-1}{2!} \\
& 3 a_{3}+a_{2}=0 \\
& 3 a_{3}=-a_{2} \\
& 3 a_{3}=\frac{-\left(a_{0}-1\right)}{2} \\
& a_{3}=-\left(\frac{a_{0}-1}{3!}\right) \\
& y=a_{0}-\frac{\left(a_{0}-1\right)}{!!} x+\frac{a_{0}-1}{2!} x^{2} \\
& -\frac{\left(a_{0}-1\right)}{3!} x^{3}+\cdots \\
& =\left(a_{0}-1+1\right)-\frac{\left(a_{0}-1\right)}{1!} x+\frac{\left(a_{0}-1\right)}{2!} x^{2} \\
& -\frac{\left(a_{0}-1\right)}{3!} x^{3}+\cdots \\
& =\left[1+\left(a_{0}-1\right)\right]-\left(a_{0}-1\right) x+\frac{\left(a_{0}-1\right)}{2!} x^{2} \\
& -\frac{\left(a_{0}-1\right.}{3!} x^{3}+\cdots \\
& =1+\left(a_{0}^{-1}\right)\left[1-x+\frac{x^{2}}{2!}-\frac{x^{3}}{3!}+\cdots\right] \\
& y=1+\left(a_{0}-1\right) e^{-x} \\
& \Rightarrow y=1+c e^{-x} \quad \text { where } c=\left(a_{0}-1\right)
\end{aligned}
$$

Direct method

$$
\left.\begin{array}{l}
y^{\prime}+y=1 \\
\frac{d y}{d x}+y=1 \\
\frac{d y}{d x}=1-y \\
\frac{d y}{1-y}=d x \\
-\log (1-y)=x+c \\
\log (1-y)^{-1}=x+c \\
(1-y)^{-1}=e^{x} \cdot e^{c} \\
\frac{1}{1-y}=e^{x} \cdot c \\
1 \\
1 \\
1
\end{array}\right)
$$

(ii) $x y^{\prime}=y$.

Sorn:
Given $\quad x y^{\prime}=y$
Assume (1) has a power series solution.

$$
\begin{aligned}
& y=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots \\
& y^{\prime}=a_{1}+2 a_{2} x+3 a_{3} x^{2}+\cdots
\end{aligned}
$$

From (1)

$$
\begin{gathered}
a_{0}=0 \\
a_{1}=a_{1} \\
2 a_{2}=a_{2} \\
2 a_{2}-a_{2}=0 \\
a_{2}=0 \\
3 a_{3}-a_{3}=0 \\
2 a_{3}=0 \\
a_{3}=0
\end{gathered}
$$

$$
y=0+a, x+0+\cdots
$$

$$
y=a_{1} x
$$

Direct method

$$
\begin{aligned}
& x y^{\prime}=y \\
& x \frac{d y}{d x}=y \\
& \frac{d y}{d x}=\frac{y}{x} \\
& \frac{d y}{y}=\frac{d x}{x} \\
& \log y=\log x+c \log c \\
& \log y=\log c x \\
& y=c x \\
& y=a_{1} x \quad \text { where } \quad c=a_{1}
\end{aligned}
$$

(iii) $4^{\prime}=2 x y$

Sold.
Given $y^{\prime}=2 x y$
Assume (a) has power series

$$
y=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots
$$

$$
y^{\prime}=a_{1}+2 a_{2} x+3 a_{5} x^{2}+4 a_{4} x^{3}+\cdots
$$

From ©.

$$
\begin{aligned}
a_{1}+ & +2 a_{2} x+3 a_{3} x^{2}+14 a_{4} x^{3} \\
& =2 a_{0} x+2 a_{1} x^{2}+2 a_{2} x^{3}+2 a_{3} x^{4}
\end{aligned}
$$

comparing co-efficients of x

$$
\begin{aligned}
a_{1} & =0 \\
2 a_{2} & =2 a_{0} \\
a_{2} & =a_{0} \\
3 a_{3}-a_{1} & =0 \\
3 a_{3} & =a_{1} \\
a_{3} & =a_{1} \\
a_{3} & =0
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{H}_{1} a_{H}-2 a_{2} & =0 \\
f_{1} a_{H} & =2 a_{2} \\
a_{H} & =\frac{a_{0}}{2!}
\end{aligned}
$$

From (1), we qet

$$
y=a_{0}+\frac{a_{1}}{1!} x+\frac{a_{2}}{2!} x^{2}+\frac{a_{3}}{3!} x^{3}+\frac{a_{1}}{4!} x^{4}+\cdots
$$

$$
\begin{aligned}
& y=a_{0}+\frac{0}{1!} x+\frac{a_{0}}{2!} x^{2}+\frac{0}{3!} x^{3}+\frac{9}{2!} x^{4}+\ldots \\
& y=a_{0}+a_{0} x^{2}+\frac{a_{0}}{2!} x^{3}+\cdots \\
& y=a_{0} e^{x^{2}}
\end{aligned}
$$

Direct method

$$
\begin{aligned}
& y^{\prime}=2 x y \\
& \frac{d y}{d x}=2 x y \\
& \frac{d y}{y d x}=2 x \cdot d x
\end{aligned}
$$

Inter rating,
$\log y, y=\frac{2 x^{2}}{2}+c$

$$
y=c e^{x^{2}}
$$

Pb: Express $\sin ^{-1} x$ in the form of a
(-47) Power Series $\sum a_{n} x^{n}$ by Solving
\& $y^{\prime}=\left(\left(-x^{2}\right)^{-1 / 2}\right.$ in two ways. use this result to obtain the formula

$$
\begin{aligned}
\frac{\frac{10}{6}}{6}=\frac{1}{2}+\frac{1}{2} & \cdot \frac{1}{3 a^{3}}+\frac{1.3}{2.4} \cdot \frac{1}{5.2^{5}} \\
& +\frac{1.3 .5}{2.4 .6}=\frac{1}{7.2^{7}}+\cdots
\end{aligned}
$$

Soln:-
Divect method,

$$
\begin{align*}
y^{\prime} & =\left(1-x^{2}\right)^{-1 / 2} \\
\frac{d y}{d x} & =\left(1-x^{2}\right)^{-1 / 2} \\
\frac{d y}{d x} & =\frac{1}{\left(1+x^{2}\right)^{1 / 2}} \\
\int \frac{d y}{d x} & =\int \frac{1}{\left(1-x^{2}\right)^{1 / 2}} \quad \therefore \int \frac{1}{\sqrt{1-x^{2}}} d x=\sin ^{-1} x \\
\int d y & =\int \frac{d x}{\left(1-x^{2}\right)^{1 / 2}} \\
\int d y & =\int \frac{d x}{\sqrt{1-x^{2}}} \quad \text { (11) }
\end{align*}
$$

Assume (1) has poweer series expansion $y=a_{0}+a_{1} x+a_{2} x^{2}+\cdots$

$$
\begin{aligned}
& y^{\prime}=a_{1}+2 a_{2} x+3 a_{3} x^{2}+\cdots \\
&\left(a_{1}+2 a_{2} x+3 a_{3} x^{2}+x_{1} a_{4} x^{3}+\cdots\right) \\
&=1+1 / 2\left(x^{2}\right)+\frac{(1 / 2)(1 / 2+1)}{2!} x^{4} \\
&+\frac{(1 / 2)(1 / 2+1)(1 / 2+2)}{3!} x^{6}+\cdots
\end{aligned}
$$

Equating Geefficients of x.

$$
\begin{aligned}
& \begin{array}{l}
a_{1}=1 \\
2 a_{2}=0 \\
a_{2}=0
\end{array} \\
& 3 a_{3}=1 / 2 \\
& a_{3}=1 / 6 \\
& 4 a_{4}=0 \\
& a_{4}=0 \\
& 5 a_{5}=\frac{(1 / 2)(3 / 2)}{2}=3 / 8 \\
& a_{5}=3 / 40 \\
& y=0+x+0+1 / 6 x^{3}+0+3 / 40 x^{5}+\cdots
\end{aligned}
$$

$$
\begin{aligned}
y & =x+1 / 6 x^{3}+3 / 40 x^{5}+\cdots \\
\sin ^{-1} x & =x+\frac{x^{3}}{6}+\frac{3}{40} x^{5}+\cdots
\end{aligned}
$$

put $x=1 / 2$,

$$
\begin{aligned}
& \sin ^{-1}(1 / 2)=1 / 2+\frac{(1 / 2)^{3}}{6}+3 / 40(1 / 2)^{5} \\
& \frac{\pi}{6}=\frac{1}{2}+\frac{1}{2} \cdot \frac{1}{3 \cdot 2^{3}}+\frac{1 \cdot 3}{2 \cdot 4 \cdot 5 \cdot 2^{5}}+\cdots
\end{aligned}
$$

$198)^{19}$
Second order differential equations and ordinary points

Consider the differential equation $\quad y^{\prime \prime}+P(x) u^{\prime}+Q(x) y=0$ Assume that $P(x)$ and $Q(x)$ are analytic at x_{0}.

Then each has a analytic at x_{0}. vaild in Some hbo of x_{0}.

In this case the point x_{0} is called the ordinary point of the equation (1).

And also every solution of (1) is analytic at m_{0}.
(1) Find Power Series Solution of $y^{\prime \prime}+y=0$ write down the general solution. of the form

$$
y=a_{0} y_{1}(x) \text { solution. } y_{2}(x) \text { when }
$$

Sold
Given $u^{\prime \prime}+y=0$ serin.

Here $P(x)=0$ and $\theta(x)=1$
clearly $P(x)$ and $Q(x)$ are analytic at all points.

Equation (0) has the power Series solution of one from

$$
\begin{align*}
y & =a_{0}+a_{1} x+a_{2} x^{2}+\cdots=\sum_{n=0}^{\infty} a_{n} x^{n} \rightarrow(2) \tag{2}\\
y^{\prime} & =a_{1}+2 a_{2} x+3 a_{3} x^{2}+\cdots=\sum_{n=1}^{\infty} n \cdot a_{n} x^{n-1} \\
u^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2} \\
& =\sum_{n=0}^{\infty}(n+1)(n+2) a_{n+2} x^{n}
\end{align*}
$$

From (11),

$$
\begin{aligned}
\sum_{n=0}^{\infty}(n+1)(n+2) & a_{n+2} \frac{x^{n}}{} \\
& +\sum_{n=0}^{\infty} a_{n} n^{n}=0
\end{aligned}
$$

Equating the coefficients x^{n} for $n=0,1,2, \ldots$ separately to zero

$$
\begin{aligned}
& (n+1)(n+2) a_{n+2}+a_{n}=0 . \\
& (n+1)(n+2) a_{n+2}=-a_{n} \\
& a_{n+2}=\frac{-a_{n}}{(n+1)(n+2)}
\end{aligned}
$$

put $n=0$,

$$
\begin{aligned}
& a_{2}=\frac{-a_{0}}{2} \\
& n=1 \Rightarrow a_{3}=\frac{-a_{1}}{6}=\frac{-a_{1}}{3!} \\
& n=2 \Rightarrow a_{4}=\frac{-a_{2}}{12}=\frac{-\left(-a_{0}\right)}{2 \times 12}=\frac{+a_{0}}{24} \\
& a_{4}=\frac{+a_{0}}{1!} \\
& a_{4}=\frac{a_{0}}{4!}
\end{aligned}
$$

When $n=3$,

$$
\begin{align*}
& a_{5}= \frac{-a_{3}}{a_{0}}=\frac{-\left(-a_{1} / 3!\right)}{20} \\
&= \frac{a_{1}}{20 \times 6}=\frac{a_{1}}{5!}+ \\
& \therefore y=a_{0}+a_{1} x-\frac{a_{0}}{2!} x^{2}-\frac{a_{1}}{3!} x^{3}+\frac{a_{0}}{4!} x^{4} \\
&+\frac{a_{1}}{5!} x^{5}+\cdots \\
& y=a_{0}\left(1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{4}}{6!}+\cdots\right) \\
&+a_{1}\left(x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\cdots\right)
\end{align*}
$$

This is the Power series
Solution of (11)
The Power Series in first term and second term are of two solutions of equation (c) clearly they are linearly.
independent
\therefore (3) is a general solution of (1).
(B) can be written as

$$
y=a_{0} \cos x+a_{1} \sin x
$$

2018119
Solve: $\left(1+x^{2}\right) y^{\prime \prime}+2 x y^{\prime}-2 y=0$

Sols.

$$
\begin{equation*}
\left(1+x^{2}\right) 4^{\prime \prime}+2 x y^{\prime}-2 y=0 \tag{1}
\end{equation*}
$$

Here, $P(x)=\frac{2 x}{1+x^{2}}, \quad Q(x)=-\frac{2}{1+x^{2}}$
$P(x)$ and $\theta(x)$ are analytic at $x_{0}=0$. Let the power series Solution of (1) be

$$
\begin{aligned}
& y=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{2}+\cdots \\
& y=\sum_{r=0}^{\infty} a_{r} x^{r} .
\end{aligned}
$$

$$
\begin{align*}
& y^{\prime}=a_{1}+2 a_{2} x+3 a_{3} x^{2} \\
& \ldots+\text { Ha }_{H} x^{3}+\cdots \\
& =\sum_{n=0}^{\infty} n a_{n} x^{n-1} \\
& y^{\prime \prime}=2 \cdot a_{2}+a_{3} x+12 a_{4} x^{2}+\cdots \\
& =\sum_{n=2}^{\infty} n(n-1): \operatorname{an}^{\infty} x^{n-2} \\
& =\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n} \rightarrow(2) \\
& x^{2} y^{\prime \prime}=2 a_{2} x^{2}+6 a_{3} x^{3}+42 a_{4} x^{4}+\cdots \\
& x^{2}\left(2 a_{0}+6 a_{3} x+12 a x^{2}+1\right) \\
& =x^{2}\left(\sum_{n=0}^{\infty} n(n-1) a_{n} x^{n-2}\right) \\
& x^{2} y^{\prime \prime}=\sum_{n=2}^{\infty}(n+2)(n+1) a_{n+2} x^{n+2} \tag{3}\\
& 2 x y^{\prime}=2 \sum_{n=0}^{\infty} n \cdot a_{n} x^{n} \\
& -24=-2 \sum_{n=0}^{\infty} \cdot a_{n} x^{n} \rightarrow 5
\end{align*}
$$

(2) $+(5)+(24)+(5)$.

$$
\begin{aligned}
& \sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n} \\
& +\sum_{n=0}^{\infty}(n(n-1) \\
& +2 \sum_{n=0}^{\infty} n a_{n} x^{n}-2 \sum_{n=0}^{\infty} a_{n} n^{n}=0 .
\end{aligned}
$$

equating the coefficients of x^{n} to 0 .

$$
\begin{aligned}
& (n+2)(n+1) a_{n+2}+n(n-1) a_{n} \\
& +2 n a_{n}-2 a_{n}=0 . \\
& \begin{aligned}
(n+2)(n+1) a_{n+2} & =2 a_{n}-2 n a_{n}-n(n-1) a_{n} \\
& =a_{n}\left[2-2 n-n^{2}+n\right] \\
& =a_{n}\left(2-n-n^{2}\right) \\
& =a_{n}\left(-n^{2}-n+2\right) \\
& =\frac{a_{n}\left(-n^{2}-n+2\right)}{(n+2)(n+1)}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
a_{n+2} & =\frac{-a_{n}\left(n^{2}+n-2\right)}{(n+2)(n+1)} \\
& =\frac{-a_{n}\left(n^{2}+2 n-n-2\right)}{(n+2)(n+1)} \\
& =\frac{-a_{n}(n+2)(n+1)}{(n+2)(n+1)} \\
a_{n+2} & =-a_{n}\left(\frac{n-1}{n+1}\right)
\end{aligned}
$$

When $n=0, \quad a_{2}=a_{0}$

$$
\begin{aligned}
n=1, \Rightarrow a_{3} & =0 \\
n=2 \Rightarrow a_{4} & =-a_{2}(1 / 3)=\frac{-a_{0}}{3} \\
n=3 \Rightarrow a_{5} & =-a_{3}(2(4))=0 \\
& =0 \\
r=4 \Rightarrow a_{6} & =-a_{4}\left(\frac{2}{2}\right)=\frac{a_{0}}{5} \\
n=5 \Rightarrow a_{7} & =-a_{5}(6(6)=0 \\
n=0 \Rightarrow a_{8} & =-a_{6}(5 / 7)=\frac{-a_{0}}{7}
\end{aligned}
$$

\therefore The Peace Series Solution is

$$
\begin{array}{r}
\begin{aligned}
y=a_{0} & +a_{1} x+a_{0} x^{2}+0+\left(-\frac{a_{0}}{3}\right) x^{4} \\
& +0+\frac{a_{0}}{5} x^{x}+0+\cdots \\
y= & +a_{0} y_{1}+c_{2} y_{2}+\left(1+x^{2}-1 / 3 x^{4}+1 / 5 x^{6}+\cdots\right) \\
y= & +a_{0} x
\end{aligned}
\end{array}
$$

Clearly these ane independent
solutions. \quad The general solution

$$
\begin{aligned}
y & =a_{0}\left(1+x^{2}-1 / 1 x^{4}+1 / 5 x^{6}+\cdots\right)+a_{1} x \\
& =a_{0}\left[1+x \tan ^{-1} x\right]+a_{1} x
\end{aligned}
$$

altai" Theorem.
Let x_{0} be an ordinary point of the differential equation $4^{\prime \prime}+P(x) u^{\prime}+Q(x) y=0 \rightarrow$ (1). Let a_{0}, a_{1} be the ordinary constants: Then there exists a unique function $y(x)$, that is analufic at x_{0} is a solution of Θ in a certain. neighbor hood of this point and satisfies the initial conditions $y\left(n_{0}\right)=90$ and $y^{\prime}\left(n_{0}\right)=a_{1}$. Further move, if the power series expansion of $P(x)$ and $Q(x)$ are valid on the interval $\left|x-x_{0}\right|=R, \quad R>0$, then the Power series solution of this expansion is also valid on the Same interval.

* Pros Given,

$$
y^{\prime \prime}+\Gamma(x) y^{\prime}+Q(x) y=0
$$

Let for convenience, $x_{0}=0$.

Then $P(x)$ and $Q(x)$ ane analytic at x_{0}.

Now tho power series expansion for $P(x)$ and $Q(x)$ are

$$
\begin{aligned}
& P(x)=\sum_{n=0}^{\infty} T_{n} x^{n} \\
& Q(x)=\sum_{n=0}^{\infty} Q_{n} x^{n}
\end{aligned}
$$

that converges on the interval $|x| \angle R$. Now we seak the power series solution of this form of equation (29).

$$
\begin{align*}
& y=\sum_{n=0}^{\infty} a_{n} x^{n} \longrightarrow(3) \\
& y=a_{0}+a_{1} x+a_{2} x^{2}+\cdots \\
& y^{\prime}=\sum_{n=1}^{\infty} n \cdot a_{n} x^{n-1} \\
& (n-n+1 \\
& y^{\prime}=\sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n} \\
& u^{\prime \prime}=\sum_{n=2}^{\infty}(n+1) n a_{n} x^{n-2} \tag{10}\\
& y^{\prime \prime}=\sum_{n=0}^{\infty}(n+1)(n+2) \xrightarrow[m+2]{ } x^{n} .
\end{align*}
$$

$$
\begin{aligned}
& \dot{P}(x) y^{\prime}=\sum_{n=0}^{\infty} T_{n} x^{n}\left[\sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n}\right] \\
& =\sum_{n=0}^{\infty} x^{n}\left[\sum_{k=0}^{n} T_{n-k}(k+1) a_{k+1}\right]-\infty(5)
\end{aligned}
$$

[\therefore by the result of Product of power series].

$$
\begin{align*}
Q(x) y & =\left(\sum_{n=0}^{\infty} q_{n} x^{n}\right) \sum_{n=0}^{\infty} a_{n} x^{n} \\
& =\sum_{n=0}^{\infty} x^{n} \cdot\left(\sum_{k=0}^{n} a_{k} \cdot q_{n-k}\right) \tag{6}
\end{align*}
$$

From (2), we get,

$$
\begin{aligned}
&(A)+(5)+(6)=0 \\
& \sum_{n=0}^{\infty}(n+1)(n+2) a_{n+2} x^{n}+\sum_{n=0}^{\infty} x^{n}\left[\sum_{k=0}^{n} p_{n-k}(k+1) q_{k+1}\right] \\
&+\sum_{n=0}^{\infty} x^{n}\left[\sum_{k=0}^{n} a_{k} q_{n-k}\right]=0
\end{aligned}
$$

Equate the coefficient of x^{n} to zero

$$
\begin{gathered}
(n+1)(n+2) a_{n+2}+\sum_{k=0}^{n} P_{n-k}(k+1) a_{k+1} \\
+\sum_{k=0}^{n} a_{k} q_{n-k}=0 .
\end{gathered}
$$

$$
\begin{aligned}
& (n+1)(n+2) a_{n+2}=-\sum_{k=0}^{n}\left[p_{n-k}(k+1) q_{k+1}+a_{k} q_{n-k}\right] \\
& \therefore a_{n+2}=\frac{-\sum_{k=0}^{n}\left[p_{n-k}(k+1) q_{k+1}+a_{k} q_{n-k}\right]}{(n+1)(n+2)}
\end{aligned}
$$

when $r=0$,

$$
a_{2}=\frac{-\left(p_{0} a_{1}+a_{0} q_{0}\right)}{2}
$$

when $n=1$,

$$
\begin{aligned}
a_{3} & =\frac{-\sum_{k=0}^{1}\left[p_{1-k}(k+i) q_{k+1}+a_{k} q_{1-k}\right]}{3 \times 2} \\
& =\frac{-\left(p_{1} q_{1}+a_{0} q_{1}+2 p_{0} a_{2}+a_{1} q_{0}\right)}{6}
\end{aligned}
$$

when $n=2$,

$$
\begin{aligned}
& a_{4}=\frac{-\sum_{k=0}^{2}\left[p_{2-k}(k+i) q_{k+1}+a_{k} \cdot q_{2-k}\right]}{3 \times 4} \\
&=-\left[p_{2} a_{1}+a_{0} q_{2}+p_{1}(2) q_{2}+a_{1} q_{1}\right. \\
&\left.+p_{0}(3) a_{3}+a_{2} q_{0}\right]
\end{aligned}
$$

\therefore Power series solution of (\$).

$$
\begin{aligned}
& y=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots \\
&=a_{0}+a_{1} x+\left(\frac{-\left(p_{0} a_{1}+a_{0} q_{1}\right)}{2}\right) x^{2} \\
&=\frac{\left(p_{1} q_{1}+a_{0} q_{1}+2 p_{0} q_{2}+a_{1} q_{0}\right)}{6} x^{3} \\
&=\frac{\left(p_{2} a_{1}+a_{2} q_{2}+2 p_{1} a_{2}+a_{1} q_{1}\right.}{\left.+3 p_{0} a_{3}+a_{2} q_{0}\right) x^{4}}+\cdots \\
& 12
\end{aligned}
$$

(7) 811^{9} These formulas determine a_{2}, a_{3}, \ldots in terms of a_{0} and a_{1}.

So the resulting series satisfies equation. (11) and the given interval condition is uniquely. determine by these requirements.

Note:-
(i) The function $y_{1}(x)$ and $y_{2}(x)$ are infinite series for all non integrable values of p.
(ii) when P is positive even integer $y_{1}(x)$ becomes a polynumial and if P^{\prime} is positive integer $u_{2}(x)$ becomes a polynomial when $P=0$, this polynomial is $y_{1}(x)=$?

When $P=1$, this polynomial is $y_{2}(x)=x$.
Similarly, if $p=2,3,2 \ldots$ the polynomials are $1-2 x^{2}, x-2 / 8 x^{2}$, $1-4 x^{2}+2 / 3 x^{4}$ These are known as tHermit's function.
problem:-(1)
Consider the equation $y^{\prime \prime}+x y+y=0$. Find its general Solution in the form

$$
y=a_{0} u_{1}(x)+a_{2} u_{2}(x)
$$

Sols. Given.,

$$
y^{\prime \prime}+x y^{\prime}+y=0 \longrightarrow \text { (1) }
$$

Here $\quad P(x)=x, \quad x(x)=1$.
$P(x)$ and $Q(x)$ are analytic at a point $x=0$.

$$
\begin{aligned}
& P(x)=\sum_{n=0}^{\infty} P_{n} x^{n}=x . \\
& Q(x)=\sum_{n=0}^{\infty} q_{n} x^{n}=1 .
\end{aligned}
$$

That are converges in the interal $|n|<\pi$.

Now, we seek the power series of the equation (4) in the form

$$
\begin{aligned}
& y=\sum_{n=0}^{\infty} a_{n} x^{n} \\
& y=a_{0}+a_{1} x+a_{2} x^{2}+\cdots \\
& y^{\prime}=\sum_{n=0}^{\infty} n \cdot a_{n} x^{n-1} \\
& P(x) y^{\prime}=x_{1}^{\prime}=\sum_{n=0}^{\infty} n \cdot a_{n} x^{n} \\
& y^{\prime \prime}=2 a_{2}+6 a_{3}+12 a_{n} x^{2}+\cdots \\
& =\sum_{n=0}^{\infty}(n+1)(n+2) x^{n} a_{n+2}
\end{aligned}
$$

(1) $\Rightarrow \sum_{n=0}^{\infty}(n+1)(n+2) a_{n+2} x^{n}$
$+\sum_{n=0}^{\infty} n \cdot a_{n} x^{n}+\sum_{n=0}^{\infty} a_{n} x^{n}=0$.

Equate the coefficients of $x^{n}=0$.

$$
\begin{aligned}
& (n+1)(n+2) a_{n+2}+n a_{n}+a_{n}=0 \\
& (n+1)(n+2) a_{n+2}=-(n+1) a_{n} \\
& \therefore a_{n+2}=\frac{a_{n}}{n+2}
\end{aligned}
$$

When $n=0, \quad a_{2}=\frac{-a_{0}}{2}$
when $n=1, \quad a_{3}=\frac{-a_{1}}{3}$
when $n=2, \quad a_{4}=\frac{-a_{2}}{4}=\frac{a_{0} / 2}{4}=\frac{a_{0}}{8}$
when $n=3, \quad a_{5}=\frac{-a_{3}}{5}=\frac{a_{1} / 3}{5}=\frac{a_{1}}{15}$
when $n=4, \quad a_{6}=\frac{-a_{4}}{6}=\frac{-a_{01} 18}{6}=\frac{-9_{0}}{48}$

$$
\begin{aligned}
\therefore y= & a_{0}+a_{1} x+a_{2} x^{2}+\cdots \\
= & a_{0}+a_{1} x-\frac{a_{0}}{2} x^{2}-\frac{a_{1}}{3} x^{3}+\frac{a_{0}}{8} x^{4} \\
& +\frac{a_{1}}{15} x^{5}-\frac{a_{0}}{4^{8}} x^{4}+\cdots \\
\text { i.e) } y= & a_{0}\left(1-\frac{x^{2}}{2}+\frac{x^{4}}{8}+\cdots\right)+a_{1}\left(x_{-}-\frac{x^{3}}{3}+\frac{x^{5}}{15}+\cdots\right)
\end{aligned}
$$

29(8) The equation $y^{\prime \prime}+\left(p+\frac{1}{2}-\frac{1}{4} x^{2}\right) y=0$, where p is a constant, certainly has a series solution of the form $\quad y=\varepsilon a_{n} x^{n}$.
(a) Show that the coefficients an are related by the three form recursion formula.

$$
(n+1)(n+2) a_{n+2}+(p+1 / 2) a_{n}-\frac{1}{4} a_{n-2}=0 \text {. }
$$

(b) If the depedent variable in changed from y to w by means of $y=w \cdot e^{-x^{2} / h}$, show that the equation is transform into $\omega^{\prime \prime}-x \omega^{\prime}+p \omega=0$.
(c) verify that the equation in (b) shas a two term recursion formula and find its general solution.

Sola:-
(0) Given.

$$
\begin{align*}
& 4^{\prime \prime}+\left(p+1 / 2-\frac{1}{4} x^{2}\right) y=0 \tag{1}\\
& \text { i.e) }-y^{\prime \prime}+(p+1 / 2) y-\frac{1}{4} x^{2} y=0
\end{align*}
$$

Let $y=\sum_{n=0}^{\infty} a_{n} x^{n}$ be a power
Series solution of the equation (1)

$$
\begin{aligned}
& y^{\prime}=\sum_{n=1}^{\infty} n \cdot a_{n} x^{n-1} \\
& y^{\prime \prime}=\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2} \\
& 4^{\prime \prime}=\sum_{n=0}^{\infty}(n+1)(n+2) a_{n+2} x^{n}
\end{aligned}
$$

$$
\begin{aligned}
&(p+1 / 2) y=(p+1 / 2) \sum_{n=0}^{\infty} a_{n} x^{n} \\
&-\frac{1}{4} x^{2} y=-\frac{1}{4} \sum_{n=0}^{\infty} a_{n} x^{n} x^{2} \\
&=-\frac{1}{4} \sum_{n=0}^{\infty} a_{n} x^{n+2} \\
&=\frac{-1}{4} \sum_{n=2}^{\infty} a_{n-2} x^{n} \\
& \Rightarrow \sum_{n=0}^{\infty}(n+1)(n+2) x^{n}+(p+1 / 2) \sum_{n=0}^{\infty} a_{n} x^{n} \\
&-\frac{1}{4} \sum_{n=2}^{\infty} a_{n-2} x^{n}=0
\end{aligned}
$$

(4)

Equate the coetficients of $x^{n}=0$.

$$
(n+1)(n+2) a_{n+2}+(p+1 / 2) a_{n}-\frac{1}{4} a_{n-2}=0 \text {. }
$$

(b)

$$
\begin{aligned}
\text { Let } y & =w e^{-x^{2} / 4} \\
y^{\prime} & =w^{\prime} e^{-x^{2} / 4}+w \cdot e^{-x^{2} / 4}\left(\frac{-2 x}{4}\right) \\
u^{\prime} & =w^{\prime} e^{-x^{2} / 4}-\frac{1}{2} w x e^{-x^{2} / 4} \\
& =w e^{-x^{2} / 4}-1 / 2 w x e^{-x^{2} / 4}
\end{aligned}
$$

$$
\begin{aligned}
y^{\prime \prime} & =\omega^{\prime \prime} e^{-x^{2} / 4}+\omega^{\prime} e^{-x^{2} / 4}\left(\frac{-2 x}{x}\right) \\
& -\frac{1}{2} \omega x e^{-x^{2} / 4} \frac{1}{2} w e^{-x^{2} / 4}-\frac{1}{2} \omega x e^{-x^{2} / 4}\left(\frac{-2 x}{4}\right) \\
& =e^{-x^{2} / 4}\left[\omega^{\prime \prime}-\frac{x}{2} \omega^{\prime}-\frac{1}{2} \omega^{\prime} x-\frac{1}{2} \omega+\frac{x}{4} \omega\right] \\
y^{\prime \prime} & =e^{-x^{2} / 4}\left[\omega^{\prime \prime}-x \omega^{\prime}-\frac{1}{2} \omega+\frac{x^{2}}{4} \omega\right]
\end{aligned}
$$

$$
\begin{align*}
& \text { (C) }=5 \\
& e^{-x^{2} / 4}\left(\omega^{\prime \prime}-x \omega^{\prime}-\frac{1}{2} \omega+\frac{x^{2}}{4} \omega\right) \\
& +(p+1 / 2) w e^{-x^{2} / 4}-x^{2} / 4 w e^{-x^{2} / 4}=0 \\
& \% \text { by } e^{-x^{2} / 4} \\
& \omega^{\prime \prime}-x \omega^{2}-1 / 2 \omega+x^{2} / 4 \omega+p \omega+1 / 2 \omega \\
& -m^{2} / 4 \omega=0 \text {, } \\
& \omega^{* 1}-x \omega^{\prime}+p \omega=0
\end{align*}
$$

(C) Let $\omega=\sum_{n=0}^{\infty} a_{n} x^{n}$ be the Rower Series Solution of (2).

$$
\begin{aligned}
w^{\prime} & =\sum_{n=0}^{\infty} n a_{n} x^{n-1} \\
& =\sum_{n=1}^{\infty} n a_{n} x^{n-1} x^{w} \\
w^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2} \\
& =\sum_{n=0}^{\infty}(n+1)(n+2) a_{n+2} x^{n} \\
(2) & \sum_{n=0}^{\infty}(n+1)(n+2) a_{n+2} x^{n} \\
\sum_{n} & \sum_{n=1}^{\infty} n a_{n} x^{n}+p \sum_{n=0}^{\infty} a_{n} x^{n}=0 .
\end{aligned}
$$

Equate the coefficients of $x^{n}=0$.

$$
\begin{aligned}
& (n+1)(n+2) a_{n+2}-n a_{n}+p a_{n}=0 \\
& (n+1)(n+2) a_{n+2}-(n-p) a_{n}=0 . \\
& \therefore a_{n+2}=\frac{(n-p)}{(n+1)(n+2)} a_{n} \\
& n=0 \Rightarrow a_{2}=\frac{-p}{2} a_{0} \\
& n=1 \Rightarrow a_{3}=\frac{(1-p)}{6} a_{1}=\frac{-(p-1)}{31} a_{1}
\end{aligned}
$$

$$
\begin{aligned}
r=2 \Rightarrow a_{H} & =\frac{2-p}{12} a_{2} \\
& =\frac{-(p-2)}{12}\left(-p / 2 a_{0}\right) \\
a_{4} & =\frac{(p-2) p}{4!} a_{0} \\
n=3 \Rightarrow a_{5} & =\frac{3-p}{4.5} a_{3} \\
& =\frac{-(p-3)}{4.5}\left(\frac{-(p-1)}{3!} a_{1}\right) \\
a_{5} & =\frac{(p-1)(p-3)}{5!} a_{1} \\
n=H \Rightarrow a_{0} & =\frac{4-p}{5.6} a_{4} \\
& =\frac{-(p-4)}{5-6}\left(\frac{(p-2) p}{4!} a_{0}\right) \\
a_{0} & =\frac{-p(p-2)(p-4)}{6!} a_{0}
\end{aligned}
$$

The Power series Solution of
(2) in $\omega=a_{0}+a_{1} x+a_{2} x^{2}+a_{9} x^{3}+\cdots$

$$
\text { (ie) } \begin{align*}
w= & a_{0}+a_{1} x-\frac{p}{2!} a_{0} x^{2} \\
& -\frac{(p-1)}{3!} a_{1} x^{3}+\frac{p(p-2)}{4!} a_{0} x^{4} \\
& +\frac{(p-1)(p-3)}{5!} a_{1} x^{5}-\frac{p(p-2)(p+4)}{6!} a_{0} x^{6}+\cdots \\
= & a_{0}\left[1-\frac{p}{2!} x^{2}+\frac{p(p-2}{4} x^{x}-\frac{p(p-2)(p+1)}{6!} a^{6}\right] \\
& +a_{1}\left[x-\frac{(p-1)}{3!} x^{3}+\frac{(p-1)(p-3)}{5!} x^{5}+\cdots\right] \\
a & =a_{0} u_{1}(x)+a_{1} u_{2}(x) \longrightarrow(3) \tag{3}
\end{align*}
$$

There $y_{1}(x)$ and $U_{2}(x)$ are linearly indopedent.
\therefore (3) is the general solution of (2).

3018119 chebysher's equation is $\left(1-x^{2}\right) y^{\prime \prime}-x y^{\prime}+p^{2} y=0$ where p is - a constant
(a) Find two linearly independent

Solutions valid for $|x|<1$.
(b) Show that is $p=n$ where n h is an integer ≥ 0, then there is a polynomial Solution of dequee n. When these are multiplied by suitable constants, they are calved the chebysheu polynomials.

Son.
Given,

$$
\begin{equation*}
\left(1-x^{2}\right) y^{\prime \prime}-x y^{\prime}+p^{2} y=0 \tag{i}
\end{equation*}
$$

Let $y=\sum_{n=0}^{\infty} a_{n} x^{n}$ be the Power Series Solution of (1).

$$
\begin{aligned}
& y^{\prime}=\sum_{n=0}^{\infty} n a_{n} x^{n-1} \\
& x y^{\prime}=\sum_{n=0}^{\infty} n a_{n} x^{n} \\
& 4^{\prime \prime}=\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2} \\
& x^{2} y^{\prime \prime}=\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n}=\sum_{n=0}^{\infty}(n-1)(n+2)
\end{aligned}
$$

$$
\begin{aligned}
& x^{2} y^{\prime \prime}= \\
& \sum_{n=0}^{\infty}(n+1)(n+2) a_{n+2} x^{n} \\
& \therefore x^{2} 4^{n}=\sum_{n=0}^{\infty}(n+1)(n+2) a_{n+2} x^{n+2}
\end{aligned}
$$

Then eau (4) becomes,

$$
\begin{aligned}
& \sum_{n=0}^{\infty}(n+1)(n+2) a_{n+2} x^{n}-\sum_{n=0}^{\infty} n(n-1) a_{n} x^{n} \\
&-\sum_{n=0}^{\infty} n a_{n} x^{n}+p^{2} \sum_{n=0}^{\infty} a_{n} x^{n}=0 .
\end{aligned}
$$

Equate the coefficient of $x^{n}=0$

$$
\begin{gathered}
(n+1)(n+2) a_{n+2}-n(n+1) a_{n}-n a_{n}+p^{2} a_{n}=0 . \\
(n+1)(n+2) a_{n+2}=n(n-1) a_{n}+n a_{n}-p^{2} a_{n} \\
\therefore a_{n+2}=\frac{\left(n(n-1)+n-p^{2}\right) a_{n}}{(n+1)(n+2)} \\
\therefore a_{n+2}=\frac{\left(n^{2}-p^{2}\right) a_{n}}{(n+1)(n+2)}
\end{gathered}
$$

when $n=0 \Rightarrow a_{2}=\frac{-\varphi^{2}}{2} a_{0}$
when $n=1$,

$$
\begin{aligned}
& a_{3}=\frac{\left(1-p^{2}\right)}{6} a_{1}=\frac{\left(1-p^{2}\right)}{3!} a_{1}=\frac{\left(p^{2}-1 \cdot\right)}{3!} a_{1} \\
& n=2, \Rightarrow a_{1}=\frac{\left(4-p^{2}\right)}{12} a_{2}=\frac{-\left(p^{2}-r\right)}{12} \cdot\left(\frac{-p^{2}}{2} a_{0}\right) \\
& =\frac{p^{2}\left(p^{2}-r\right)}{4!} a_{0} \\
& a_{4}=\frac{p^{2}\left(p^{2}-2^{2}\right)}{4!} a_{0} \\
& n=3 \Rightarrow a_{5}=\frac{3^{2} p^{2}}{4 \times 5} a_{3} \\
& =\frac{\left(z^{2}-p^{2}\right)}{5 \times 4}\left(\frac{-\left(p^{2}-1\right)}{3!} a_{1}\right) \\
& a_{5}=\frac{\left(p^{2}-1^{2}\right)\left(p^{2}-3^{2}\right)}{5!} a_{1} \\
& r=H \Rightarrow a_{6}=\frac{\left(r^{2}-p^{2}\right)}{5+6} a_{4} \\
& =\frac{-\left(p^{2}-x^{2}\right)}{5 \times b}\left(\frac{p^{2}\left(p^{2}-2^{2}\right)}{d z} a_{0}\right) \cdots
\end{aligned}
$$

$$
a_{6}=\frac{-p^{2}\left(p^{2}-2^{2}\right)\left(p^{2}-4^{2}\right)}{6!} a_{0}
$$

When $n=5$,

$$
\begin{aligned}
& a_{y}=\frac{5^{2}-p^{2}}{6 x y} a_{5} \\
& =\frac{-\left(P^{2}-5^{2}\right)}{6 \times 4}\left(\frac{\left(P^{2}-1^{2}\right)\left(P^{2}-3^{2}\right)}{5!} a,\right) \\
& a_{7}=-\frac{\left(p^{2}-1^{2}\right)\left(p^{2}-3^{2}\right)\left(p^{2}-5^{2}\right)}{2!} a, \ldots \\
& y=a_{0}+a_{1} x+a_{2} x^{2}+\cdots \\
& y=a_{0}+a_{1} x-\frac{p^{2}}{2} a_{0} x^{2}-\frac{\left(p^{2}-1\right)}{3!} a_{1} x^{3} \\
& +\frac{p^{2}\left(p^{2}-2^{2}\right)}{4!} a_{0} x^{4}+\frac{\left(p^{2}-1^{2}\right)\left(p^{2}-3^{2}\right)}{5!} a_{1} x^{5} \\
& -\frac{p^{2}\left(p^{2}-2^{2}\right)\left(p^{2}-x^{2}\right)}{6!} a_{0} x^{6}- \\
& \frac{\left(p^{2}-1^{2}\right)\left(p^{2}-3^{2}\right)\left(p^{2}-5^{2}\right)}{7!} a x^{7}+\cdots
\end{aligned}
$$

$$
\begin{aligned}
& y=a_{0}\left[1-\frac{p^{2}}{2!} x^{2}+\frac{p^{2}\left(p^{2}-2^{2}\right)}{4!} x^{4}\right. \\
& \left.\frac{-p^{2}\left(p^{2}-2^{2}\right)\left(p^{2}-x^{2}\right)}{6!} x^{6}+\cdots\right] \\
& +a_{1}\left[x-\frac{\left(P^{2}-1\right)}{3!} x^{3}+\frac{\left(P^{2}-1^{2}\right)\left(P^{2}-3^{2}\right.}{5!} x^{5}\right. \\
& \left.\frac{-\left(p^{2}-1^{2}\right)\left(p^{2}-3^{2}\right)\left(p^{2}-5^{3}\right)}{2!} x^{7}+\cdots\right] \\
& y=a_{0} \quad 4_{1}(x)+a_{1} y_{2}(x) \\
& P=0, \quad u_{1}(x)=1 \\
& P=1, \quad y_{2}(x)=x \\
& p=2, \quad u_{1}(x)=1-2 x^{2} \\
& p=3, \quad y_{2}(x)=x-4 / 3 x^{3} \\
& p=4, \quad y_{1}(x)=x-2 x^{2}+8 x^{4}+\cdots
\end{aligned}
$$

(8) a) 10
pRoblem.
V. verify that the equation
(2) $4^{\prime \prime}+y^{\prime}-x y=0$. has the three term recursion formula and find its series sold $y_{1}(x)$ and $y_{2}(x)$ such that (a) $\quad y_{1}(0)=1, \quad y_{1}^{\prime}(0)=0$.
(b) $\quad y_{2}(0)=0, \quad y_{2}^{\prime}(0)=1$

Soln.

$$
y^{\prime \prime}+y^{\prime}-x y=0
$$

let $y=\sum_{n=0}^{\infty} a_{1} x^{n}$ be a power Series Solution by equation (1).

$$
\begin{align*}
& y=a_{0}+a_{1} x+a_{2} x^{2}+\cdots \\
& y=\sum_{n=0}^{\infty} a_{n} x^{n}: \\
& y^{\prime}=\sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n} \rightarrow \\
& u^{\prime \prime}=\sum_{n=0}^{\infty}(n+1)(n+2) a_{n+2} x^{n} \\
& x y=\sum_{n=0}^{\infty} a_{n} x^{n+1}=\sum_{n=0}^{\infty} a_{n-1} x^{n}
\end{align*}
$$

$$
y^{\prime \prime}+y-x y=0
$$

$$
\begin{gathered}
\sum_{n=0}^{\infty}(n+1)(n+2) a_{n+2} x^{n}+\sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n} \\
-\sum_{n=0}^{\infty} a_{n-1} x^{n}=0
\end{gathered}
$$

Clearly the coefficients of x^{n} for separately cero, $n=0,1,2, \ldots$

$$
\begin{aligned}
& (n+1)(n+2) a_{n+2}+(n+1) a_{n+1}-a_{n-1}=0 \\
& \therefore a_{n+2}=\frac{a_{n-1}-(n+1) a_{n-1}}{(n+1)(n+2)}
\end{aligned}
$$

when $n=0$,

$$
a_{2}=-\frac{a_{1}}{2!}
$$

when $n=1$,

$$
a_{3}=\frac{a_{0}+a_{1}}{3!}
$$

when $x=2$,

$$
a_{4}=\frac{a_{1}-a_{0}}{x_{!}}
$$

when $n=3$,

$$
a_{5}=\frac{-4 a_{1}+a_{0}}{5!}
$$

$$
\begin{aligned}
& \begin{aligned}
y= & a_{0}+a_{1} x+a_{2} x^{2}+\cdots \\
= & a_{0}
\end{aligned}+a_{1} x-\frac{a_{1}}{2!} x^{2}+\left(\frac{a_{0}+a_{1}}{3!}\right) x^{3} \\
&+\left(\frac{a_{1}-a_{0}}{4!}\right) x^{4}+\left(\frac{4 a_{1}+a_{0}}{5!}\right) x^{5}+\cdots \\
& y= a_{0}\left(1+\frac{x^{3}}{3!}-\frac{x 4}{4!}+\frac{x^{5}}{5!} \cdots\right] \\
&+a_{1}\left[x-\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}-\frac{4 x^{5}}{5!}+\cdots\right] \\
& y_{1}(x)=1+\frac{x^{3}}{3!}-\frac{x^{4}}{4!}+\frac{x^{5}}{5!}-\cdots \\
& y_{2}(x)= x-\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}-\frac{4 x^{5}}{5!}+\cdots \\
& y_{1}(0)=1 \\
& y_{1}^{\prime}(x)= \frac{3 x^{2}}{3!}-\frac{4 x^{3}}{4!}+\frac{5 x^{4}}{5!}-\frac{x_{2}}{5!}=0 \\
& y_{2}^{\prime}(x)=1-\frac{2 x}{2!}+\frac{3 x^{2}}{3!}+\frac{4 x^{3}}{4!}-\frac{20 x^{4}}{5!}+\cdots \\
& y_{2}^{\prime}(0)=1
\end{aligned}
$$

(6) 1$)^{2}$

Unit - III

Regular Singular Points

Def:
(A point x_{0} is called singular point of differential equation $4^{\prime \prime}+p(x) u^{\prime}+Q(x) y=0$, if one or other or both of the coefficients of functions $p(x)$ and $Q(x)$ foils to analytic at x_{0}.
example
Consider, $\quad x^{2} y^{\prime \prime}+2 x y^{\prime}-2 y=0$.

$$
\begin{aligned}
& y^{\prime \prime}+\frac{2 x y^{\prime}}{x^{2}}-\frac{2 y}{x^{2}}=0 \\
& y^{\prime \prime}+\frac{2}{x^{x}} y^{\prime}-\frac{2}{x^{2}} y=0
\end{aligned}
$$

Here $\quad P(x)=\frac{2}{x}, \quad Q(x)=-\frac{3}{x^{2}}$
put $x=0$,

$$
P(x)=\frac{2}{0}=\infty, \quad Q(x)=\frac{-2}{0}=\infty
$$

$P(x)$ and $Q(x)$ are not analytic at zero.
$x=0$ in a singular point Define:

A Singular point x_{0} of differential equation $4^{\prime \prime}+p(x) y^{\prime}+\alpha_{n}^{(i)}(y)=0$ is said to be a regular if $\left(x-x_{0}\right)$ $P(x)$ and $\left(x-x_{0}\right)^{2} Q(x)$ are analytic otherwise the singular point is irregular.

Example
Consider, $x^{2} y^{\prime \prime}+2 x y^{\prime}-2 y=0$

$$
\begin{array}{r}
y^{\prime \prime}+\frac{2}{x} y^{\prime}-\frac{\frac{2}{x^{2}}}{x^{2}}-\frac{2 y}{x^{2}}=0 \\
P(x)=\frac{2}{x}, Q(x)=-\frac{2}{x^{2}}
\end{array}
$$

$P(x)$ and $Q(x)$ are not analytic at $x=0$.

Hence $x=0$ in a Singular point

$$
\begin{aligned}
& x p(x)=x\left(\frac{2}{x}\right)=2 \\
& x^{2} \theta(x)=x^{2}\left(\frac{-2}{x^{2}}\right)=-2
\end{aligned}
$$

Here $\operatorname{xp}(x)$ and $x^{2} Q(x)$ are analytic at $x=0$.
$=$ The orgin is reqular singular point.

Example
Consider the legenalue polynomial

$$
\begin{aligned}
& \left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+P(p+1) y=0 \\
& y^{\prime \prime}-\frac{2 x y^{\prime}}{1-x^{2}}+\frac{p(p+1) y}{1-x^{2}}=0
\end{aligned}
$$

Here, $\quad P(x)=\frac{-2 x}{1-x^{2}}, \quad Q(x)=\frac{P(p+1)}{1-x^{2}}$

$$
P(\pm 1)=\infty \quad, \quad \otimes(\pm 1)=\infty
$$

$\therefore P(x)$ and $Q(x)$ are not analytic at $x= \pm 1$.
$\therefore x= \pm 1$ are singular points

Take $x_{0}=1$

$$
\begin{aligned}
\left(x-x_{0}\right) p(x) & =(x-1)\left(\frac{-2 x}{1-x^{2}}\right) \\
& =\frac{2 x}{1+x} \\
\left(x-x_{0}\right)^{2} Q(x) & =(x-1)^{2} \frac{p(p+1)}{1-x^{2}} \\
& =\frac{-(x-1) p(p+1)}{1+x}
\end{aligned}
$$

Wove $(x-1) p(x)$ and $(x-1)^{2} Q(x)$ are analytic at $x=1$;
$\therefore x=1$ is a regular singular point Take $x_{0}=-1$

$$
\begin{aligned}
\left(x-x_{0}\right) p(x) & =(x+1)\left(\frac{-2 x}{1-x^{2}}\right) \\
& =\frac{-2 x}{1-x} \\
\left(x-x_{0}\right)^{2} Q(x) & =\frac{(n+1)^{2} p(p+1)}{1-x^{2}} \\
& =\frac{(x+1) p(p+1)}{1-x}
\end{aligned}
$$

Here $\left(x-x_{0}\right) P(x)$ and $\left(x-x_{0}\right)^{2} Q(x)$ are analytic at $x=-1$
$\therefore x=-1$ is a requiter Singular point
problem
(1) Determine the nature of Singular points of

$$
\begin{aligned}
& x^{3}(x-1) y^{\prime \prime}-2(x-1) y^{\prime}+3 x y=0 \\
& y^{\prime \prime}-\frac{2(x-1)}{x^{3}(x-1)} y^{\prime}+\frac{3 x}{x^{3}(x-1)} y=0 \\
& y^{\prime \prime}-\frac{2}{x^{3}} y^{\prime}+\frac{3}{x^{2}(x-1)} y=0
\end{aligned}
$$

Here $p(x)=\frac{-2}{x^{9}}, Q(x)=\frac{3}{x^{2}(x-1)}$
$P(x)$ and $Q(x)$ are not analytic at $x=0$,
$\therefore x=0,1$ are singular points.

Take, $x_{0}=0$

$$
\begin{aligned}
& \left(x-x_{0}\right) P(x)=(x-\infty)\left(\frac{-2}{x^{3}}\right)=\frac{-2}{x^{2}} \\
& \left(x-x_{0}\right)^{2} Q(x)=(x-\theta)^{2}\left(\frac{3}{x^{2}(x-1)}\right)=\frac{3}{x-1}
\end{aligned}
$$

$\therefore\left(x-x_{0}\right) p(x)$ is not analytic
at $x=0$.
\therefore out $\left(x-x_{0}\right)^{2} \alpha(x)$ is anally tic at $x=0$.
fleece $x=0$ is a irregular singular point

Take $x=1$,

$$
\begin{aligned}
& \left(x-x_{0}\right) P(x)=(x-1)\left(\frac{2}{x^{3}}\right) \\
& \left(x-x_{0}\right)^{2} Q(x)=(x-1)^{2}\left(\frac{3}{x^{2}(x-1)}\right)=\frac{3(x-1)}{x^{2}} \\
& \left(x-x_{0}\right) p(x) \text { and }\left(x-x_{0}\right)^{2} Q(x) \text { are }
\end{aligned}
$$ analytic at $x=1$

$\therefore x=1$ is a reqular Sinqula. point

Here $\left(x-x_{0}\right) P(x)$ and $\left(x-x_{0}\right)^{2} Q(x)$ are analytic at $x=-1$
$\therefore x=-1$ is a reqular singular point
problem
(1) Determine the nature of Singular points of

$$
\begin{aligned}
& x^{3}(x-1) 4^{\prime \prime}-2(x-1) y^{\prime}+3 x y=0 \\
& y^{\prime \prime}-\frac{2(x-1)}{x^{3}(x-1)} y^{\prime}+\frac{3 x}{x^{3}(x-1)} y=0 \\
& 4^{\prime \prime}-\frac{2}{x^{3}} y^{\prime}+\frac{3}{x^{2}(x-1)} y=0
\end{aligned}
$$

Here $P(x)=\frac{-2}{x^{3}}, Q(x)=\frac{3}{x^{2}(x-1)}$
$p(x)$ and $Q(x)$ are not analytic at $x=0$,
$\therefore x=0,1$ are singular points.

Take, $x_{0}=0$

$$
\begin{aligned}
& \left(x-x_{0}\right) \mathbb{P}(x)=(x-0)\left(\frac{-2}{x^{3}}\right)=\frac{-2}{x^{2}} \\
& \left(x-x_{0}\right)^{2} Q(x)=(x-0)^{2}\left(\frac{3}{x^{2}(x-1)}\right)=\frac{3}{x-1}
\end{aligned}
$$

$\therefore\left(x-x_{0}\right) p(x)$ is not analytic at $x=0$.
\therefore out $\left(x-x_{0}\right)^{2} \alpha(x)$ is anally tic at $x=0$.
thence $x=0$ is a irregular Sinquatar point Take $x=1$,

$$
\begin{aligned}
& \left(x-x_{0}\right) p(x)=(x-1)\left(\frac{2}{x^{3}}\right) \\
& \left(x-x_{0}\right)^{2} Q(x)=(x-1)^{2}\left(\frac{3}{x^{2}(x-1)}\right)=\frac{3(x-1)}{x^{2}} \\
& \left(x-x_{0}\right) p(x) \text { and }\left(x-x_{0}\right)^{2} \alpha(x) \text { are }
\end{aligned}
$$ analytic at $x=1$

$\therefore x=1$ is a reqular Sinqula. point

H919
(9) Determine the nature of Singular point of

$$
x^{\circ}\left(x^{2}-1\right)^{2} 4^{\prime \prime}-x(1-x) 4^{\prime}+2 y=0 .
$$

Solution

$$
\begin{aligned}
4^{\prime \prime} & =\frac{x(1-x)}{x^{2}\left(x^{2}-1\right)} 4^{\prime}+\frac{2 y}{x^{2}\left(x^{2}-1\right)^{2}}=0 \\
P(x) & =\frac{-(1-x)}{x(x-1)^{2}(x+1)^{2}} \\
& =\frac{1}{x(x+1)^{2}(x-1)} \\
Q(x) & =\frac{2}{x^{2}\left(x^{2}-1\right)^{2}} \\
& =\frac{2}{x^{2}(x-1)^{2}(x+1)^{2}}
\end{aligned}
$$

$P(x)$ and $Q(x)$ are not analytic at $x=0, \pm 1$

Hence $x=0, \pm 1$ are singular points
Take $x_{0}=0$

$$
\begin{aligned}
& \left(x-x_{0}\right) P(x)=x \frac{1}{x(x+1)^{2}(x-1)}=\frac{1}{(x+1)^{2}(x-1)} \\
& \left(x-x_{0}\right)^{2} Q(x)=x^{2} \frac{2}{x^{2}\left(x^{2}-1\right)^{2}}=\frac{2}{\left(x^{2}-1\right)^{2}} \\
& \left(x-x_{0}\right) P(x),\left(x-x_{0}\right)^{2} Q(x) \text { are }
\end{aligned}
$$ analytic at $x_{0}=0$

$\therefore \quad x=0$ is reqular Singular point.
take $\quad x=1$

$$
\begin{aligned}
& (x-1) p(x)=(x-1) \frac{1}{x(x+1)^{2}(x-1)}=\frac{1}{x(x+1)^{2}} \\
& (x-1)^{2} Q(x)=\frac{2}{x^{2}(x+1)^{2}}
\end{aligned}
$$

$(x-1) p(x),(x-1)^{2} Q(x)$ are analytic at $x=1$.
$\therefore x=1$ is a requiar Singular point.
Take $x=-1$

$$
\begin{aligned}
& (x+1) P(x)=\frac{1}{x(x+1)(x-1)} \\
& (x+1)^{2} Q(x)=\frac{2}{x^{2}(x-1)^{2}}
\end{aligned}
$$

$(x+1) P(x)$ is not analytic at $x=-1$ $\therefore x=-1$ is an irrequar Singular point.
(3). Determine the natural of point $x=0$ for the following equation
(a) $y^{\prime \prime}+(\sin x) y=0$
b) $x^{3} y^{2 \prime}+(\sin x) y=0$
(2) $x y^{\prime \prime}+(\sin x) y=0$
d.) $x^{2} y^{\prime \prime}+\sin x y=0$.

Sol.
(9) Given $4^{\prime \prime}+\sin x+y=0$.

$$
\begin{aligned}
P(x)=0, \quad Q(x) & =\sin x \\
& =x+\frac{x^{3}}{3!}+\frac{x^{5}}{5!} \cdots
\end{aligned}
$$

$P(x)$ and $\theta(x)$ are analytic at $x=0$
$x=0$ is not Singular point
(b.) Given, $x^{3} y^{\prime \prime}+(\sin x) y=0$.

$$
\begin{aligned}
4^{\prime \prime}+\frac{\sin x}{x^{3}} y & =0 . \\
P(x)=0 \text { and } \quad A(x) & =\frac{\sin x}{x^{3}} \\
& =\frac{1}{x^{3}}\left[x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!} \cdots\right]
\end{aligned}
$$

$$
\therefore x=0
$$

$P(x)$ and $Q(x)$ is not analytic at $x=0$.

Hence $x=0$ is sinquiar point. put $x_{0}=0$.

$$
\begin{aligned}
\left(x-x_{0}\right) P(x) & =(x-0) \cdot 0=0 \\
\left(x-x_{0}\right)^{2}, Q(x) & =\frac{x^{2}}{x^{3}}\left[x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!} \cdots\right] \\
& =1 / x\left[x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!} \cdots\right] \\
& =1-\frac{x^{2}}{3!}+\frac{x^{4}}{5!}+\cdots
\end{aligned}
$$

$\left(x-x_{0}\right) P(x)$ and $\left(x-x_{0}\right)=Q(x)$ are analytic at $x=0$.

Hence $x=0$ is neqular singular point
20. Given, $x y^{\prime \prime}+(\sin x) y=0$.

$$
\begin{aligned}
& 4^{\prime \prime}+\frac{\sin x}{x} y=0 . \\
& P(x)=0 \\
& Q(x)=\frac{\sin x}{x} \\
& \\
& =y_{x}\left[x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!} \cdots\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{x}{x}\left[1-\frac{x^{2}}{3!}+\frac{x^{4}}{5!} \cdots \cdot\right] \\
& =1-\frac{x^{2}}{3!}+\frac{x^{4}}{5!} \cdots
\end{aligned}
$$

$P(x)$ and $\alpha(x)$ is analytic at $x=0$.
fience $x=0$ is reqular sinqular poinet
(d)

$$
\begin{aligned}
& x^{4} y^{\prime \prime}+\sin x y=0 \\
& y^{\prime \prime}+\frac{\sin x}{x^{4}} y=0
\end{aligned}
$$

$$
P(x)=0 \text { and } \quad Q(x)=\frac{\sin x}{x^{H}}
$$

$$
Q(x)=\frac{1}{x^{4}}\left[x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!} \cdots \cdot\right]
$$

$$
=\frac{x^{n}}{x^{+}}\left[1-\frac{x^{2}}{3!}+\frac{x+}{5!} \ldots .\right]
$$

$$
=\frac{1}{x^{3}}-\frac{1}{x 3!}+\frac{x}{5!}-\cdots
$$

$P(x)$ and $Q(x)$ is not analyitic cet $x=0$.

Heve $x=0$ is sinquar point put 200 xoc

$$
\begin{aligned}
& \left(x-x_{0}\right) P(x)=x_{0}=0 \\
& \left(x-x_{0}\right)^{2} \quad Q(x)=\frac{x^{2}}{x^{H}}\left[x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{x}\left[1-\frac{x^{2}}{3!}+\frac{x^{4}}{5!}-\cdots\right] \\
& =\frac{1}{x}-\frac{x}{3!}+\frac{x^{3}}{5!} \cdots
\end{aligned}
$$

$\left(x-x_{0}\right) P(x)$ and $Q(x)$ are analytic at $x=0$. But $\left(x-x_{0}\right)^{2} Q(x)$ is not analytic at $x=0$ fence $x=0$ is irregular sinquar point.

$$
\begin{aligned}
& \text { i. .e) } x^{2} y^{\prime \prime}+(\sin x) y=0 . \\
& \quad 4^{\prime \prime}+\frac{\sin x}{x^{2}} y=0 \\
& P(x)=0, \quad Q(x)=\frac{\sin x}{x^{2}} \\
& \begin{aligned}
Q(x) & =\frac{1}{x^{2}}\left[x-\frac{x^{3}}{3!}+\frac{x 5}{5!}-\cdots\right] \quad \\
& =\frac{x}{x^{2}}\left[1-\frac{x^{2}}{3!}+\frac{x^{4}}{5!}+\cdots\right]=\frac{1}{x}-\frac{x}{3!}+\frac{x^{3}}{5!} \cdots
\end{aligned}
\end{aligned}
$$

$P(x)$ and $Q(x)$ are is not analytic at $n=0$.

Hence $x=0$ is a singular point put $x=0$

$$
\begin{aligned}
& \text { put } x=0 \\
&\left(x-x_{0}\right) p(x)=x \cdot 0=0 . \\
&\left(x-x_{0}\right)^{2} Q(x)=x^{2}\left[\frac{1}{x}-\frac{x}{3!}+\frac{x^{3}}{5!} \cdots \cdots\right] \\
&=x-\frac{x^{3}}{3!}+\frac{x 5}{5!} \cdots \cdots
\end{aligned}
$$

$T(x), Q(x)$ are analytic at $x=0$. Hence $x=0$ is a reqular singular point,
$19 / 919$ for each of the following differential (4) equation locate and classify ane Singular points.
(a) $x^{3}(x-1) y^{\prime \prime}-2(x-1) y^{1}+3 x y=0$
(b) $(3 x+1) x y^{\prime \prime}-(x+1) y^{\prime}+2 y=0$.
(c) $x^{2} y^{\prime \prime}+(2-x) y^{\prime}=0$.

Sol vo
Given,
(a) $x^{3}(x-1) y^{\prime \prime}-2(x-1) y^{\prime}+3 x y=0$
\div by $x^{3}(x-1)$

$$
\begin{gathered}
y^{\prime \prime}-\frac{2(x-1)}{x^{3}(x-1)} y^{\prime}+\frac{3 x}{x^{3}(x-1)} y=0 \\
y^{\prime \prime}-\frac{2}{x^{3}} y^{\prime}+\frac{3}{x^{2}(x-1)} y=0 \\
P(x)=\frac{-2}{x^{3}} ; Q(x)=\frac{3}{x^{2}(x-1)}
\end{gathered}
$$

$P(x)$ is not analytic at $x=0$ $Q(x)$ is not analytic at $x=0$, , $\therefore x=0.1$ are singular points of (1)

$$
x P(x)=-\frac{2}{x^{3}} ; x^{2} Q(x)=\frac{3}{x-1}
$$

$x p(x)$ is neet analytic at $x=0$.
$\therefore x=0$ is an irneqular singular
point of (11)

$$
\begin{aligned}
& (x-1) P(x)=-\frac{2(x-1)}{x^{3}} \\
& (x-1)^{2} a(x)=\frac{3(x-1)}{x^{2}}
\end{aligned}
$$

$(x-1) p(x)$ and $(x-1)^{2} Q(x)$ ane analytic at $x=1$
$\therefore x=1$ is a reqular Sinqular point of (14)
(b)

$$
\begin{aligned}
& (3 x+1) x y^{\prime \prime}-(x+1) y^{\prime}+2 y=0 \\
& \% \text { by }(3 x+1) x \\
& y^{\prime \prime}-\frac{(x+1)}{(3 x+1) x} y^{\prime}+\frac{2}{(3 x+1) x} y=0 \\
& P(x)=-\frac{(x+1)}{(3 x+1) x}, \theta(x)=\frac{2}{(3 x+1) x}
\end{aligned}
$$

$P(x)$ and $Q(x)$ are not analytic at $x=0,-1 / 3$
$x=0,-1 / 3$ are singular points

$$
\begin{aligned}
& x p(x)=\frac{-x(x+1)}{x(3 x+1)}=\frac{-(x+1)}{(3 x+1)} \\
& x^{2} Q(x)=\frac{2 x}{x(3 x+1)}=\frac{2}{x(3 x+1)}
\end{aligned}
$$

$x p(x)$ and $x^{2} \otimes(x)$ are analytic at $x=0$.
$\therefore x=0$ is a irreqular singular point.

$$
\begin{aligned}
& (3 x+1) P(x)=\frac{-(x+1)(3 x+1)}{x(3 x+1)}=\frac{-(x+1)}{x} \\
& (3 x+1)^{2} Q(x)=\frac{2(3 x+1)^{2}}{x(3 x+1)}=\frac{2(3 x+1)}{x}
\end{aligned}
$$

$(3 x+1) P(x) \subset(3 x+1)^{2} Q(x)$ are analytic at $x=-1 / 3$
$\therefore x=-1 / 3$ is a reqular Singular point
c.

$$
\begin{aligned}
& x^{2} y^{\prime \prime}+(2-x) y^{\prime}=0 \\
& \% \text { by } x^{2} \\
& y^{\prime \prime}+\frac{2-x}{x^{2}} y^{\prime}=0 \\
& P(x)=\frac{2-x}{x^{2}} \quad ; Q(x)=0 .
\end{aligned}
$$

$p(x)$ is not analytic at $x=0$.
$\therefore x=0$ is a Singular point

$$
x p(x)=\frac{2-x}{x}, \quad x^{2} \theta(x)=0 .
$$

$x p(x)$ is not analytic at $x=0$.
$\therefore x=0$ is an irregular singular point.
(5). Consider the differential equation

$$
y^{\prime \prime}+\frac{1}{x^{2}} y^{\prime}+\frac{1}{x^{3}} y=0
$$

(a) Show that $x=0$ is an irregular singular point
(b) use the fact that $4,=x$ a solution to find a second
independent Solution 4_{2}.
Sols. Gowan
(a)

$$
\begin{aligned}
& y^{\prime \prime}+\frac{1}{x^{2}} y^{\prime}-\frac{1}{x^{3}} y=0 \\
& P(x)=\frac{1}{x^{2}} ; \quad Q(x)=\frac{1}{x^{3}}
\end{aligned}
$$

$P(x), Q(x)$ are not analytic of $x=0$.
$\therefore x=0$ is a singular point.

$$
x p(x)=\frac{1}{x}, \quad x^{2} \alpha(x)=\frac{-1}{x}
$$

$x p(x)$, $x^{2} Q(x)$ are not ancilytic at $x=0$.
$\therefore x=0$ is an irreqular Singular point
(b). Let $y_{1}=x$ be a solution of (1).
let $y_{2}=v y_{1}$,
Now, $v=\int \frac{1}{41_{2}^{2}} e^{-\int P(x) d x}$

$$
\begin{aligned}
& =\int \frac{1}{x^{2}} e^{-\int \frac{1}{x^{2}} d x} d x \\
& =\int \frac{1}{x^{2}} e^{-1 x} d x
\end{aligned}
$$

Let $\frac{1}{x}=u$

$$
-\frac{1}{x^{2}} d x=d u
$$

$$
\begin{aligned}
\therefore v= & -\int e^{u} d u \\
& =-e^{u} \\
& =-e^{1 / x} \quad\left[\therefore u=v_{x}\right]
\end{aligned}
$$

\therefore Second independent solution
u_{2} is given by.

$$
y_{2}=v y_{1} \Rightarrow x
$$

$$
y_{2}=-x \cdot e^{4 / x}
$$

24419
Solve the Euler's equation

$$
x^{2} y^{\prime \prime}+p x y^{\prime}+q y=0 \text {. }
$$

Soln.
Given $x^{2} y^{\prime \prime}+p x y^{\prime}+q y=0 \longrightarrow$ (b).

$$
\begin{array}{r}
y^{\prime \prime}+\frac{P x y^{\prime}}{x^{2}}+\frac{q y}{x^{2}}=0 \\
y^{\prime \prime}+\frac{P}{x^{2}} y^{\prime}+\frac{q}{x^{2}} y=0 . \\
P(x)=P / x^{2}, \quad Q(x)=q / x^{2}
\end{array}
$$

$P(x), Q(x)$ are not analytic at $x=0$.

Hence $x=0$ is a singular point

$$
x p(x)=P, \quad x^{2} \quad Q(x)=q,
$$

which are analytic at $x=0$, $\therefore x=0$ is a regular Singular point

$$
\text { put } z=\log x \text { (er) } x=e^{z}
$$

the $\frac{d z}{d x}=\frac{1}{x}$

$$
\begin{align*}
& u^{\prime}=\frac{d y}{d x}=\frac{d y}{d z} \cdot \frac{d z}{d x} \\
& =\frac{d y}{d z} \cdot \frac{1}{x} \\
& \therefore x d x=\frac{d y}{d z} \\
& \frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{d y}{d x}\right) \\
& =\frac{d}{d x}\left(\frac{d y^{u}}{d z} \cdot \frac{1}{x}\right) \\
& =\frac{d}{d x}\left(\frac{1}{x}\right) \frac{d y}{d z}+\left(\frac{1}{x}\right) \frac{d}{d x}\left(\frac{d y}{d z}\right) \\
& =-\frac{1}{x^{2}} \frac{d y}{d z}+\frac{d}{d z}\left(\frac{d y}{d z}\right)\left(\frac{1}{x^{2}}\right) \\
& =\frac{1}{x^{2}}\left[\frac{d^{2} y}{d z^{2}}-\frac{d y}{d z}\right] \\
& x^{2} \frac{d^{2} y}{d x^{2}}=\frac{d^{2} y}{d z^{2}}-\frac{d y}{d z} \tag{2}
\end{align*}
$$

\therefore (1) becomes,

$$
\begin{align*}
& \frac{d^{2} y}{d z^{2}}-\frac{d y}{d z}+p \frac{d y}{d z}+q y=0 \\
& \frac{d^{2} y}{d z^{2}}-(p-1) \frac{d y}{d z}+q y=0 \tag{3}
\end{align*}
$$

The auxuitlary equation is

$$
\begin{equation*}
m^{2}+(p-1) m+q=0 \tag{H}
\end{equation*}
$$

Let m, and m_{2} be two serrations of (4) Then $e^{m, z}$ and $e^{m_{2}}=$ are two linearly independent Solutions of (3) is $m_{1} \neq m_{2}$. (ye) and $x^{m 2}$ are two linearly independent' solution, of
(1) if $m_{1} \not m_{2} \quad\left\{\therefore x=e^{2}\right\}$ $x^{m_{1}}$ and $x^{m_{1}} \log x$ are two independent solutions if $m_{1}=m_{2}$.

Remark.
1.) The most general solution of differential equation with reqular Singular point at the origin is $y^{\prime \prime}+p_{1} Y^{\prime}+q_{1 x^{2}} y=0$ with pow Series $y^{\prime \prime}+\frac{\left(p_{0}+p_{1} x+\cdots\right)}{x} y^{\prime}+\frac{\left(q_{0}+q_{1} x+\cdots\right)}{x^{2}} y=0$
2.) Consider the equation

$$
\begin{equation*}
y^{\prime \prime}+P(x) u^{\prime}+Q(x) u=0 \tag{1}
\end{equation*}
$$

The general form of the function analytic at $x=0$ is $a_{0}+a_{1} x+a_{2} x^{2}+\cdots$.

The series sols of C of the form

$$
\begin{aligned}
& \text { form } \\
& y=a_{0} x^{m}+a_{1} x^{m+1}+a_{2} x^{m+2}+\cdots \\
& \text { series. }
\end{aligned}
$$

is called froberius series.
20. Sol
$2 x^{2} y^{\prime \prime}+x(2 x+1) y^{\prime}-y=0$ by using the Frobenius method.

Sole:

$$
\begin{equation*}
\text { Given } 2 x^{2} y^{\prime \prime}+x(2 x+1) y-y=0 \tag{1}
\end{equation*}
$$

$$
\begin{aligned}
& y^{\prime \prime}+\frac{x(2 x+1)}{2 x^{2}} y^{\prime}-\frac{4}{2 x^{2}}=0 \\
& P(x)=\frac{2 x+1}{2 x} \quad Q(x)=-\frac{1}{2 x^{2}}
\end{aligned}
$$

$P(x), Q(x)$ are not analytic at $n=0$.

$$
x P(x)=\frac{2 x+1}{2}, x^{2} Q(x)=\frac{-1}{2}
$$

which are analytic at $x=0$ $\therefore x=0$ is a reqular sinqualar point

Assume $y=a_{0} x^{m}+a_{1} x^{m+1}+a_{2} x^{m+2}+\ldots$ $a_{0} \neq 0$. be the Froberius Series

$$
\begin{aligned}
& \text { of (1). } \\
& u^{\prime}=m a_{0} x^{m-1}+(m+1) a_{1} n^{m} \\
& +(m+2) a_{2} x^{m+1}+\cdots \\
& y^{\prime \prime}=m(m-1) a_{0} x^{m-2}+m(m+1) a_{1} x^{m-1} \\
& +(m+1)(m+2) a_{2} x^{m}+\cdots \\
& \text { (4) } \Rightarrow \quad y^{\prime \prime}+\frac{2 x+1}{2 x} y^{\prime}-\frac{1}{2 x^{2}} \quad y=0 \text {. } \\
& \text { +f } \times 12^{-n} m(m-1) a_{0} x^{m-2}+m(m+1) a_{1} x^{m-1} \\
& +(m+1)(m+2) a_{2} x^{m}+\cdots \cdot \\
& +(1+1 / 2 x)\left(m a_{0} x^{m-1}+(m+1) a_{1} x^{m}\right. \\
& \left.+(m+2) a_{2} x^{m+1}+\cdots\right) \\
& -\frac{1}{2 x^{2}}\left(a_{0} x^{m}+a_{1} x^{m+1}+a_{2} x^{m+2}+\cdots\right)=0
\end{aligned}
$$

$$
\begin{aligned}
m(m-1) & a_{0} x^{m-2}+m(m+1) a_{1} x^{m-1} \\
& +(m+1)(m+2) a_{2} x^{m-2}+\cdots \\
+ & \left(\frac{2 m+1}{2}\right)\left(m a_{0} x^{m-2}+(m+1) a_{1} x^{m-1}\right. \\
& \left.(m+2) a_{2} x^{m}+\cdots\right) \\
& -1\left(2\left(a_{0} x^{m-2}+a_{1} x^{m-1}+a_{2} x^{m}+\cdots\right)=0\right.
\end{aligned}
$$

Divide by x^{m-2}

$$
\begin{gathered}
{\left[m(m-1) a_{0} x+(m)(m+1) a_{1} x\right.} \\
\left.+(m+1)(m+2) a_{2} x^{2}+\cdots\right] \\
+(x+1 / 2)\left[m a_{0}+(m+1) a_{1} x\right. \\
\left.+(m+2) a_{2} x^{2}+\cdots\right] \\
-1 / 2\left[a_{0}+a_{1} x+a_{2} x^{2}+\cdots\right]=0
\end{gathered}
$$

Equate the coefficients and Constant of x, x^{2}, x^{3}, \ldots to zero

$$
\begin{equation*}
m(m-1) a_{0}+\frac{m}{2} a_{0}-\frac{1}{2} a_{0}=0 \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
m(m+1) a_{1}+m a_{0}+\frac{m+1}{2} a_{1}-\frac{a_{1}}{2}=0 \tag{3}
\end{equation*}
$$

$$
\begin{aligned}
& \text { (2) } \Rightarrow \quad a_{0}\left[m(m-1)+\frac{m}{2}-\frac{1}{2}\right]=0 . \\
& \Rightarrow m(m-1)+\frac{m}{2}-\frac{1}{2}=0 \quad\left\{\therefore a_{0} \neq 0\right\}
\end{aligned}
$$

$$
\begin{gathered}
m^{2}-m+\frac{m}{2}-\frac{1}{2}=0 \\
2 m^{2}-2 m+m-1=0 \\
2 m(m-1)+(m+1)=0 \\
(2 m+1)(m-1)=0 \\
m=1,-1 / 2
\end{gathered}
$$

put $m=1$ and assume that $a_{0}=1$.
(3) $=1(1+1) a_{1}+1+\frac{2}{2} a_{1}-\frac{a_{1}}{2}=0$

$$
\begin{gathered}
2 a_{1}+1+a_{1}-\frac{a_{1}}{2}=0 \\
3 a_{1}-\frac{a_{1}}{2}=-1 \\
\frac{6 a_{1}-a_{1}}{2}=-1 \\
5 a_{1}=-2 \\
a_{1}=-2 / 5
\end{gathered}
$$

$$
\text { (4) } \left.\Rightarrow \quad 1(1+1)(1+2) a_{2}+(1+1)(-2 / 5) 8 \text { (1+2 }\right) a_{2}-\frac{a_{2}}{2}=0 .
$$

Take $m=-1 / 2$ and assume $\alpha_{0}=1$

$$
\left.\begin{array}{l}
\text { (3) }=\frac{-1}{2}\left(\frac{-1}{2}+1\right) a_{1}+\left(\frac{-1}{2}\right)(1) \\
\\
\\
+\frac{(-1 / 2+1)}{2} a_{1}-\frac{a_{1}}{2}=0 . \\
a_{1}=
\end{array}\right)=-\frac{(-1 / 2+2)}{2} a_{2}-\frac{1}{2} a_{2}=0 .
$$

Take two frobenius. Series solution are

$$
\begin{aligned}
& \left(x^{m}-\frac{2}{5} x^{m+1}+\frac{4}{35} x^{m+2}+\cdots\right) \text { and } \\
& \left(x^{m}-x^{m+1}+1 / 2 x^{m+2}+\cdots\right)
\end{aligned}
$$

Clearly the two solutions ane linearly independent.
\therefore The general solution of (1)

$$
\begin{aligned}
& y=c_{1}\left(x^{m}-2 / 5 x^{m+1}+\frac{4}{35} x^{m+2}+\ldots\right) \\
& \quad+c_{2}\left(x^{m}-x^{m+1}+1 / 2 x^{m+2}+\cdots\right)
\end{aligned}
$$

Problem.

$$
2 x y^{\prime \prime}+(3-x) y^{\prime}-y=0
$$

Soln,
Given, $2 x y^{\prime \prime}+(3-x) y^{\prime}-y=0$

$$
\begin{gathered}
4^{\prime \prime}+\frac{(3-x)}{2 x} y^{\prime}-\frac{y}{2 x}=0 \\
P(x)=\frac{3-x}{2 x}, \quad Q(x)=1 / 2 x
\end{gathered}
$$

$P(x)$ and $Q(x)$ are not analytic at $\quad x=0$

Hence $x=0$ is a singular point

$$
\begin{aligned}
& \left(x-x_{0}\right) P(x)=x, \\
& P(x)=x \cdot \frac{3-x}{2 x}=\frac{3-x}{2} \\
& \left(x-x_{0}\right)^{2} Q(x)=x^{2}, \\
& Q(x)=x^{2} \cdot{ }_{2} / 2 x=x / 2
\end{aligned}
$$

$x p(x)$ and $x^{2} p(x)$ are sinalyfic at $x=0$

Hence $x=0$ is regular Singular point. ASSume,

$$
y=a_{0} x^{m}+a_{1} x^{m+1}+\cdots+a_{0} \neq 0
$$

be the froberins series solution for (1),

$$
\begin{aligned}
& y^{1}=m a_{0} x^{m-1}+(m+1) a_{1} x^{m}+(m+2) a_{2} x(m+n) \\
& 4^{\prime \prime}=m(m-1) a_{0} x^{m-2}+(m)(m+1) a_{1} x^{m-1} \\
& +(m+1)(m+z) a_{2} x^{m}+\ldots \\
& \text { (1) } \Rightarrow \quad 4^{\prime \prime}+\left(\frac{3-x}{2 x}\right) 4^{\prime}-\frac{1}{2 x} y=0 \text {. } \\
& m(m-1) a_{0} x^{m-2}+m(m-1) a_{1} x^{m-1} \\
& +(m+1)(m+2) a_{2} x^{m}+\cdots \\
& \begin{array}{r}
+\left(\frac{3}{2 x}-\frac{x}{2 x}\right) m a_{0} x^{m}+a_{1} x^{m+1} \\
\left.+a_{2} x^{m+2}+\cdots\right]=0
\end{array} \\
& {\left[m(m-1) a_{0} x^{m-2}+m(m-1) a_{1} n^{m-1}+(m+1)(m+2) a_{2} m^{m}+\right.} \\
& -1_{2} \text { mad } x^{m-1}-1_{2}(m+i) a_{1} x^{m}-1 c_{2} m+1\left(a_{2}\right) x^{m-1} \\
& \left.+1 / 2 a_{0} x^{m-1}+1 / 2 a_{1} x^{m}+1 / 2 a_{2} x^{m+1}+\cdots\right]=0
\end{aligned}
$$

$$
\begin{aligned}
& m(m-1) a_{0} x^{m-2}+m(m+1) a_{1} x^{m-1} \\
& +(m+1)(m+2) a_{2} x^{m}+\cdots+3 / 2 m a_{0} x^{m-2} \\
& +3 / 2 x^{m+1} a_{1} x^{m-1}+3 / 2(m+2) a_{2} x^{m}+\cdots \\
& -1 / 2 m a_{0} x^{m-1}-1 / 2(m+1) a_{1} x^{m}- \\
& 1 / 2(m+1) a_{2} x^{m+1}-1 / 2 a_{0} x^{m-1} \\
& -1 / 2 a_{1} x^{m}-1 / 2 a_{2} x^{m+1}=0
\end{aligned}
$$

Divide x^{m-2},
$m(m-1) a_{0}+m(m+1) x+(m+1)(m+2) a_{2} x^{2}$

$$
\begin{aligned}
& +3 / 2 m a_{0}+3 / 2(m+i) a_{1} x^{2}-1 / 2(m+1) a_{2} x^{3} \\
& -1 / 2 a_{0} x-1 / 2 a_{1} x^{2}-1 / 2 x^{3}=0 .
\end{aligned}
$$

Equating the coefficients and constant of $x_{1}, x^{2} \ldots$ to zero $m(m-1) a_{0}+3 / 2 m a_{0}=0$.

$$
\begin{array}{r}
m(m+1)+3 / 2(m+1) a_{1}-1 / 2 m a_{0} \tag{1}\\
\\
-1 / 2 a_{0}=0
\end{array}
$$

$(m+i)(m+2) a_{0}+3 / 2(m+2) a_{2}-1 / 2(m+1) a_{1}$

$$
\begin{equation*}
-1 / 2 a_{0}=0 \tag{3}
\end{equation*}
$$

$$
\begin{aligned}
& \text { (1) } \Rightarrow a_{0}[m(m-1)+3 / 2 m]=0 . \\
& m^{2}-m+3 / 2 m=0 \\
& 2 m^{2}-2 m+3 m=0 \\
& 2 m^{2}+m=0 \Rightarrow m(m m+1)=0 \\
& \Rightarrow 2 m+1=0 \\
& m=0,-1 / 2
\end{aligned}
$$

put $m=0$ and assume $a_{0}=1$

$$
\begin{gathered}
(2) \Rightarrow 0(0+1)+3 / 2(0+1) a_{1}-1 / 2(0)(1)-1 / 2(1)=0 \\
0+3 / 2 a_{1}-1 / 2=0 \\
1-3 / 2 a_{1}=0 \\
a_{1}=1 / 2 \times 2 / 3 \Rightarrow a_{1}=1 / 2
\end{gathered}
$$

put $m=0$,

$$
\begin{aligned}
& \text { (3) } \Rightarrow 2 a_{2}+\frac{3}{2}(2) a_{2}-1 / 2(1)(1 / 3)-1 / 2 \cdot 1 / 3=0 \\
& 2 a_{2}+3 a_{2}-1 / 6-1 / 6=0 \\
& 5 a_{2}-2 / 6=0 \\
& 5 a_{2}-1 / 3=0 \\
& a_{2}=1 / 3^{x / 1} 5=1 / 15 \\
& \Rightarrow a_{2}=1 / 15
\end{aligned}
$$

$$
\begin{aligned}
& m=0, \quad a_{0}=1, \quad a_{1}=1 / 3, a_{2}=1 / 15 \\
& \Rightarrow m=-1 / 2 \\
& \Rightarrow \quad \frac{-1}{2}\left(-\frac{1}{2}+1\right)+3 / 2(-1 / 2+1) a_{1}-1 / 2(-1 / 2) a_{0} \\
& -1 / 2 a 0=0 \\
& -1 / 2(1 / 2)+3 / 2(1 / 2) a_{1}+1 / 4 a_{0}-1 / 2 a_{0}=0 \\
& -\frac{1}{4}+3 / 4 a_{1}+1 / 4 a_{0}-1 / 2 a_{0}=0 \text {. } \\
& 3 / 4 a_{1}-1 / 4 a_{0}=1 / 4 \\
& 3 / 4 a_{1}=1 / 4+1 / 4 \\
& 3 / 4 a_{1}=2 / 4 \\
& \Rightarrow 3 a_{1}=2 \\
& \Rightarrow a_{1}=3 / 3 \\
& m=-1 / 2 \\
& \Rightarrow(-1 / 2+1)\left(-\frac{1}{2}+2\right) a_{2}+3 / 2(-1 / 2+2) a_{2} \\
& -\frac{1}{2}(-1 / 2+1)-1 / 2 a_{1}=0 \\
& \left(\frac{1}{2}\right)\left(\frac{3}{2}\right) a_{2}+(3 / 2)(3 / 2) a_{2}-1 / 2(1 / 2)(2 / 3) \\
& -1 / 2(2 / 3)=0
\end{aligned}
$$

$$
\begin{gathered}
3 / 4 a_{2}+a_{14}-1 / 6-1 / 3=0 \\
\frac{12}{4} a_{2}-3 / 6=0 \\
\frac{12}{4} a_{2}=1 / 2 \\
a_{2}=1 / 6 \\
m=-1 / 2, a_{0}=1, a_{1}=2 / 3, \quad a_{2}=1 / 6
\end{gathered}
$$

Problem

$$
x^{2} y^{\prime \prime}-3 x y^{\prime}+(4 x+4) y=0 \text {. Show }
$$

that has only one frobenius series and find it.

Soln:
Given,

$$
\begin{aligned}
& x^{2} y^{\prime \prime}-3 x y^{\prime}+(4 x+x) y=0 \\
& \Rightarrow y^{\prime \prime}-\frac{3 x y^{\prime}}{x^{2}}+\frac{(4 x+H)}{x^{2}} y=0 \\
& \Rightarrow y^{\prime \prime}-\frac{3}{x} y^{\prime}+\frac{(4 x+H)}{x^{2}} y=0 \\
& P(x)=-3\left(x \text { and } Q(x)=\frac{4 x+H}{x^{2}}\right.
\end{aligned}
$$

$P(x)$ and $Q(x)$ ane analytic
at $x=0$.
fere $x=0$ is singular point

$$
\begin{aligned}
& x p(x)=x(-3 / x)=-3 \\
& x^{2} \Delta(x)=\frac{x^{2}(x x+1)}{x^{2}}=4 x+4
\end{aligned}
$$

$x p(x)$ and $x^{2} Q(x)$ are analytic at $x=0$.
$x=0$ is regular singular point.
Assume that

$$
\begin{aligned}
& \text { sume that } \\
& y=a_{0} x^{m}+a_{1} x^{m-1}+a_{2} x^{m-2}+\cdots \text {. }
\end{aligned}
$$

be a frobenius series soln for eqn (1)

$$
\begin{aligned}
& y^{\prime}=m a_{0} x^{m-1}+(m+1) a_{1} x^{m}+(m+2) a_{2} x^{m+1} \\
& u^{\prime \prime}=m(m-1) a_{0} x^{m-2}+(m+1) m a_{1} x^{m-1} \\
& -(m+1)(m+2) a_{2} x^{m} \\
& x^{2} u^{\prime \prime}-3 \\
& y^{\prime \prime}-\frac{3 y^{\prime \prime}}{x}+\frac{x x+4}{x^{2}} y=0
\end{aligned}
$$

$$
\left[\begin{array}{l}
{\left[m(m-1) a_{0} x^{m-2}+m(m+1) a_{1} x^{m-1}\right.} \\
+(m+1)(m+2) a_{2} x^{m}+3 \cdots \\
-3 / x\left[m a_{0} x^{m-1}+(m+1) a_{1} x^{m}+(m+2) a_{2} x^{m+1}+\cdots\right] \\
+\frac{4 x+1}{x^{2}}\left[a_{0} x^{m-1}+a_{1} x^{m+1}+a_{2} x^{m+2}+\cdots\right]=0 \\
m(m-1) a_{0} x^{m-2}+m(m+1) a_{1} x^{m-1} \\
\quad+(m+1)(m+2) a_{2} x^{m}+\cdots-3 m a_{0} x^{m-2} \\
-3(m+1) a_{1} x^{m-1}-3(m+2) a_{2} x^{m}-\cdots+1 \\
+4 a_{0} x^{m-1}+4 a_{1} x^{m}+4 a_{2} x^{m+1}+\cdots+a_{0} x^{m-2} \\
+4 a_{0} x^{m}+4 a_{2} x^{m}+\cdots=0
\end{array}\right.
$$

Divide x^{m-2}

$$
\begin{aligned}
& m(m-1) a_{0}+m(m+1) a_{1} x+(m+1)(m+2) a_{2} x^{2} \\
&-3 m a_{0}-3(m+1) a_{1} x-3(m+2) a_{2} x^{2}+\cdots \\
&-4 a_{0} x+4 a_{1} x^{2}+4 a_{2} x^{3}+\cdots+4 a_{0} x . \\
&+4 a_{1} x+4 a_{2} x^{2}+\cdots=0 .
\end{aligned}
$$

Equating the coefficients of $x_{1} x^{2} \ldots$ to zero

$$
\begin{align*}
& m(m-1) a_{0}-3 m a_{0}+H a_{0}=0 \tag{5}\\
& m(m+1) a_{1}-3(m+1) a_{1}+4 a_{0}+4 a_{1}=0 \tag{3}\\
& (m+1)(m+2) a_{2}-3(m+2) a_{2}+4 a_{1}+4 a_{2}(4) \tag{4}\\
& \text { (2) } \Rightarrow a_{0}[m(m-1)-3 m+x]=0 \\
& m^{2}-m-3 m+x=0 \\
& m^{2}-H m+H=0 \\
& \begin{array}{c}
4 \\
-2-2
\end{array} \\
& (m-2)(m-2)=0 \Rightarrow m-2=0 \\
& m=2,0
\end{align*}
$$

Legendre polynomial
Derive the $n^{\text {th }}$ degree polynomial $p_{n}(m)$ and deduce that $\phi_{n}(1)=1, \quad P_{n}(-1)=(-1)^{n}$.
Solo.
Consider the legendre polynomial

$$
\begin{equation*}
\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+n(x+i) y=0 \tag{0}
\end{equation*}
$$

The equation is analytic in the region $-1<x<1$.

To find the soln of (1) bounded near $x=1$.
now, let $t=1 / 2(1-x) \Rightarrow 1 / 2-1 / 2 x$

$$
\begin{aligned}
& 2 t=1-x \quad d t=-1 / 2 d x \\
& x=1-2 t \\
& x=-2 t+1 \Rightarrow \frac{d t}{d x}=-1 / 2 \\
& y^{\prime}=\frac{d y}{d x}= \frac{d y}{d t} \cdot \frac{d t}{d x}=-1 / 2 \frac{d y}{d t} \\
& y^{\prime \prime}=\frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{d}{d x}\left(-1 / 2 \frac{d y}{d t}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =-1 / 2 \frac{d}{d t}\left(\frac{d y}{d x}\right) \\
& =-1 / 2 \frac{d}{d t}\left(-1 / 2 \frac{d y}{d t}\right) \\
& =\frac{1}{4}\left(\frac{d^{2} y}{d t^{2}}\right)
\end{aligned}
$$

From (1), we get

$$
\begin{aligned}
& \begin{array}{r}
\left(1-(1-2 t)^{2}\right)\left(\frac{1}{4} \frac{d^{2} y}{d t^{2}}\right)
\end{array}-2(1-2 t)\left(-\frac{1}{2}-\frac{d y}{d t}\right) \\
&+n(n+1) y=0 \\
&(h t-4+2)\left(\frac{1}{4} \frac{d^{2} y}{d t^{2}}\right)+(1-2 t) \frac{d y}{d t} \\
&+n(n+1) y=0 \\
& \text { hut }(1-t) \frac{1}{h}\left(\frac{d^{2} y}{d t^{2}}\right)+(1-2 t) \frac{d y}{d t}+n(n+1) y=0 \\
& t(1-t) \frac{d^{2} y}{d t^{2}}+(1-2 t) \frac{d y}{d t}+n(n+i) y=0
\end{aligned}
$$

where

$$
\begin{equation*}
y^{\prime}=\frac{d y}{d I}, \quad 4^{\prime \prime}=\frac{d^{2} y}{d t^{2}} \tag{2}
\end{equation*}
$$

This is the hyper Geometric equation with $a=n, b=n t 1, c=1$ and near to $t=0$

The Solution of equation (2) is

$$
u_{1}=F(-n, n+1, c, t)
$$

The second soln ot (2) in $y_{2}=v y$, where,

$$
\begin{aligned}
V & =\int \frac{1}{4_{1}^{2}} e^{-\int p(t) d t} d t \\
& =\int \frac{1}{4_{1}^{2}} e^{-\int \frac{1-2 t}{t(1-t)} d t} \cdot d t \\
v^{\prime} & =\frac{1}{4_{1}^{2}} e^{\log (t(1-t))^{-1}} \\
& =\frac{1}{4_{1}^{2}} \frac{1}{(-(1-t))}
\end{aligned}
$$

Y. is a polynomial with constant term

$$
\begin{aligned}
v^{\prime} & =1 / t\left(1+a_{1} t+a_{2} t^{2}+\cdots\right) \\
& =\frac{1}{t}+a_{1}+a_{2} t+a_{3} t^{2}+\cdots
\end{aligned}
$$

Integrating, we get

$$
v=\log t+a_{1} t+a_{2} \frac{t^{2}}{2}+\frac{a_{3} t^{3}}{3}+\cdots
$$

\therefore the sols of en (2) is

$$
\begin{equation*}
y=c_{1} y_{1}+c_{2} y_{2} \tag{2}
\end{equation*}
$$

Because of the Present in loot is y_{2} it is clear that 3 is bounded near $t=0$ if $c_{2}=0$.

If we replace t by $1 / 2(1-x)$ The solution of (1) is Bounded hear $x=1$ and are Constant multiply of polynomial.

The $r^{\text {th }}$ deque polynomial $P_{r}(m)$ is defined by

$$
\begin{aligned}
P_{r}(n)= & =F(-n, n+1,1,1 / 2,1-x) \\
= & \frac{1+(-n)(n+1)}{!(1)}\left(\frac{1-x}{2}\right)+\frac{-n(-n+1)(n+1)(n+2)}{\left.n!(1)^{2}\right)}+\cdots \\
& +\frac{n(n-1) \cdots(n-(n-1)(n+1)(n+2)}{n!(1,2, \ldots n)} \\
= & \frac{1+n(n+1)}{1!}\left(\frac{n-1}{2}\right)+\frac{n(n-1)(n+1)(n+2)}{(n-1)^{2} 2^{3}}(n-1)^{2}+\cdots \\
& +\frac{n(n-1) \cdots(n-(n+1))(n+1) \cdots 2 n}{(n!)^{2} 2^{n}}+\cdots
\end{aligned}
$$

$$
\begin{aligned}
P_{n}(x)= & \frac{1+n(n+1)}{1!2^{(1)}}(m-1)+\frac{n(n-1)(n+1)(n+2)}{(21)^{2} 2^{n}}(x-1)^{2}+\ldots \\
& \frac{+n(n-1) \cdots 1(n+1)(n+2) \cdots(2 n)}{(n-1)^{2} 2^{n}}(x-1)^{n} \\
& \quad \begin{aligned}
P_{n}(x)= & +\frac{n(n+1)}{1!2!}(x-1)+\frac{n(n-1)(n+1)(n+2)}{(21)^{2} 2^{2}}+\ldots \\
& +\frac{(2 n)!}{(n-1)^{2} 2^{n}}(n-1)^{n} \longrightarrow(1)
\end{aligned}
\end{aligned}
$$

$\operatorname{Pr}(x)$ is a polynomial of degree n, that contains only even or odd powers in accordinly n is even of oud.
\therefore It can be written as

$$
\begin{equation*}
P_{n}(x)=a_{n} x^{n}+a_{n-2} x^{n-2}+a_{n-4} x^{n-4}+\cdots \tag{5}
\end{equation*}
$$

This ends with a_{0} it n ir even and a, if n is odd

$$
P_{r}(n)=1+\frac{n(n+1)}{1 \because 2}(n-1)+\frac{n(n-1)(n+1)(n+2)}{(21)^{2} \cdot 2^{2}}(n-1)^{2}+\cdots
$$

put $x=1$, we get

$$
P_{n}(i)=1
$$

put $x=-1$, we get in (1)

$$
\begin{aligned}
P_{n}(-1) & =a_{1}(-1)^{n}+a_{n-2}(-i)^{n-2}+a_{n-1}(-)^{n-1}+\cdots \\
& =(-1)^{n} \quad\left(a_{1}+a_{n-2}+a_{n-1}+\cdots\right) \\
& =(-1)^{n} \quad\left\{\therefore P_{n}(1)=1\right\} \\
P_{n}(-1) & =(-1)^{n}
\end{aligned}
$$

State and Prove orthogonal property
U. θ of legendre polynomials
prove that

$$
\int_{-1}^{1} P_{n}(x) P_{n}(x) d x=\left\{\begin{array}{cl}
0 & \text { if } m \neq n \\
\frac{2}{2 n+1} & \text { if } m=n
\end{array}\right.
$$

where the Sequence of legendre polynomial) $p_{0}(x), P_{1}(x), P_{2}(n) \cdots, p_{n}(x)$ is a sequence of orthogonal function on the inter (a) $-1 \leq x \leq 1$ consider,

$$
I=\int_{-1}^{1} f(x) P_{n}(x) d x
$$

By Rodique's formula, we have

$$
\begin{aligned}
P n(x) & =\frac{1}{2^{n} \cdot n!} \frac{d^{n}}{d x^{n}}\left(x^{2}-1\right)^{n} \\
\therefore I & =\frac{1}{2^{n} \cdot n!} \int_{-1}^{1} f(x) \cdot \frac{d^{n}}{d x^{n}}\left(x^{2}-1\right)^{n} d x \\
& =\frac{1}{2^{n} \cdot n!} \int_{-1}^{1} f(x) \frac{d}{d x}\left[\frac{d^{n-1}}{d x^{n-1}}\left(x^{2}-1\right)^{n}\right] d x \\
& =\frac{1}{2^{n} \cdot n!} f(x)\left[\frac{d^{n-1}}{d x^{n-1}}\left(x^{2}-1\right)^{n}\right]_{-1}^{1} \\
& =\frac{1}{2^{n} n!} \int_{-1}^{1} \frac{d^{n-1}}{d x^{n-1}} \theta-\int_{-1}^{1} \frac{\left.x^{2}-1\right)^{n} f^{n-1}((x) d x}{d x^{n-1}}\left(x^{2}-1\right)^{n} f^{\prime}(x) d x \\
& =\frac{-1}{2^{n} \cdot n!} \int_{-1}^{1} \frac{d^{n-1}}{d x^{n-1}}\left(x^{2}-1\right)^{n} f^{\prime}(x) d x
\end{aligned}
$$

Proceeding like this, we get

$$
I=\frac{(-1)^{n}}{2^{n} n!} \int_{-1}^{1} \frac{d^{n-2}}{d x^{n+2}}\left(x^{2}-1\right)^{n} f^{\prime}(x) d x
$$

$$
I=\frac{(-1)^{n}}{2^{n} \cdot n!} \int_{1}^{1}\left(x^{2}-1\right)^{n} f^{\prime}(x) d x
$$

Assume theet

$$
f(x)=R_{n}(x)
$$

W.L.G, assume thed $m<n$ Thon $f^{n}(x)=0 \Rightarrow f^{h}(x)=\operatorname{Pm}(x)=0$

$$
\therefore I=\int_{-1}^{1} P_{m}(x) P_{n}(x)^{d x}=0
$$

If $m=n$, put $f(x)=\operatorname{Pn}(x)$

$$
\text { (1) } \begin{aligned}
\Rightarrow I & =\frac{(-1)^{n}}{2^{n} \cdot n!} \int_{-1}^{1} P_{n}^{(n)}(x)\left(x^{2}-1\right)^{n} d x \\
= & \frac{(-1)^{n}}{2^{n} n!} \frac{(2 n)!}{(n!) 2^{n}} \int_{-1}^{1}\left(n^{2}-1\right)^{n} d x \\
& \left\{-P_{n}^{n(n)}=\frac{2 n!}{(n!) 2^{n}}\right\} \\
= & \frac{(-1)^{n}(2 n!)}{2^{2 n} \cdot(n!)^{2}} \int_{-1}^{1}\left(x^{2}-1\right)^{n} d x
\end{aligned}
$$

$$
=\frac{(-1)^{n}(2 n)!}{2^{2 n} \cdot(n!)^{2}} 2 \int_{0}^{1}\left(x^{2}-1\right)^{n} d x
$$

put $x=\sin \theta$ then $d x=\cos \theta d \theta$

x	p	1
θ	0	$\pi / 2$

$$
\begin{aligned}
& I=\frac{(-1)^{n}(2 n)!}{2^{2 n} \cdot(n!)^{2}} 2 \int_{-1}^{\pi / 2}\left(\sin ^{2} \theta-1\right)^{n} \cos \theta d \theta \\
& =\frac{(-1)^{n}(2 n)!}{2^{2 n} \cdot(n!)^{2}} 2 \int_{0}^{\pi / 2}(-1)^{n} \cos ^{2 n} \theta \cos \theta d \theta \\
& =\frac{(2 n)!}{2^{2 n} \cdot(n!)^{2}} 2 \int_{0}^{\pi / 2} \cos ^{2 n+1} \theta d \theta\left[\begin{array}{l}
\sin ^{2} \theta+\cos ^{2} \theta=1 \\
\sin ^{2} \theta-1=\cos ^{2} \theta
\end{array}\right. \\
& {\left[\therefore \int_{0}^{\pi / 2} \cos ^{n} \theta d \theta=\frac{n-1}{n}-\frac{n-3}{n-2}-2 / 3.1 \text { if } n \text { is } \theta d d\right] \text {] }} \\
& =\frac{(2 n)!}{2^{2 n}(n!)} 2\left[\frac{2 n}{(2 n-1)} \frac{(2 n-2)}{(2 n-3)} \cdots 2 / 3\right] \\
& =\frac{(2 n)!}{2^{2 n} n!}=\frac{(2)^{2 n}(n!)^{2}}{(2 n+1)(2 n)!}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\frac{2}{2 m+1}}{\int_{-1}^{1} \operatorname{Pm}(x) \operatorname{Pr}(x) d x= \begin{cases}0 & \text { if } \quad r \neq n \\
\frac{2}{2 n+1} & \text { if } m=n\end{cases} } . \begin{array}{l}
m=n \\
\frac{2}{2}
\end{array}
\end{aligned}
$$

Derive Rodrigue's formula for legendre polynomial
proof:-
$W \cdot K=$ the Recursion formula for legendre polynomial

$$
a_{n+2}=\frac{-(p-n)(n+p+1)}{(n+1)(n+2)} a_{n}
$$

Replace p by n and n by $k-2$

$$
a_{k}=\frac{-(n-k+2)(k-2+n+1)}{(k-2+1)(k-2+2)} a_{k-2}
$$

$$
\begin{aligned}
& =\frac{-(n-k+2)(n+k-1)}{(k-1)(k)} a_{k-2} \\
a_{k-2} & =\frac{-k(k-1)}{(n+2-k)(k+n-1)} a_{x} \\
& =\frac{-k(k-1)}{(n-k+2)(k+n-1)} a_{x}
\end{aligned}
$$

when $k=n, n-2, n-4, \ldots$,
we Shave

$$
\begin{aligned}
a_{n-2} & =\frac{-n(n-1)}{2(2 n-1)} a_{n} \\
a_{n-1} & =\frac{(n-2)(n-2-1)}{(n-n+2+2)(n-2+n-1)} a_{n-2} \\
& =\frac{(n-2)(n-3)}{4(2 n-3)} a_{n-2} \\
a_{n-1} & =\frac{(n-2)(n-3)}{x(2 n-3)} \cdot \frac{-n(n-1)}{2(2 n-1)} a_{n}
\end{aligned}
$$

$$
=\frac{n(n-1)(n-2)(n-3)}{2.4(2 n-1)(2 n-3)} \text { an, and so on. }
$$

Now,

$$
\begin{aligned}
& P_{n}(x)=a_{n} x^{n}+a_{n-2} x^{n-2}+a_{n-1} x^{n+1}+\cdots \\
& =a_{n} x^{n}+\frac{n(n-1)}{2(2 n-1)} x^{n-2} a_{n} \\
& +\frac{n(n-1)(n-2)(n-3)}{2 \cdot 4(2 n-1)(2 n-3)} \text { xan } \\
& =a_{n} x^{n}-\frac{n(n-1)}{2(2 n-1)} a_{n} x^{n-2} \\
& +\frac{n(n-1)(n-2)(n-3)}{2 \cdot 4(2 n-1)(2 n-3)} \text { xant... } \\
& \left.+(-1)^{k} n(n+1) \cdot(n-(2) x-1)\right) a_{n} \\
& x^{h-2 k} \\
& (2 \cdot 4 \ldots 2 k)(2 n-1) \cdots . \\
& (2 n-(2 k-1)) \text {. } \\
& =\operatorname{an}\left[x^{n}-\frac{n(n-1)}{2(2 n-1)} x^{n-2}+\frac{n(n-1)(n-2)(n-3}{2 \cdot H \cdots(2 n-1)}\right. \\
& (2 n-3) \\
& x^{n+1}+\cdots+\frac{(-1)^{k} n(n-1) \cdots(n-2 k+1)}{2 \cdot 4 \cdots(k+1) 2 k-1}
\end{aligned}
$$

$$
\begin{align*}
& 2 k(2 n-1) \cdots \\
& (2 n-2 k+1) n(n-1) \cdots \\
& (n-2 k+1) x^{n-2 k}+\cdots \tag{1}
\end{align*}
$$

Now

$$
\begin{aligned}
& n(n-1) \cdots(n-2 k+1) \\
& =\frac{n(n-1) \cdots(n-2 k+1)(1,2 \ldots n-2 k)}{(1,2 \ldots n-2 k)!} \\
& =\frac{n(n-1) \ldots(n-2 k+i)(n-2 k)}{(n-2 k)!} \\
& =\frac{n!}{(n-2 k)!} \\
& \text { 2. } 4 \cdot 6 \cdots \cdot 2^{k}=2^{k}(1-2 \ldots k) \\
& =2^{k}(k!) \\
& 2^{n}(2 n-1)(2 n-3) \cdots(2 n-2 k+1) \\
& =\frac{2^{n}(2 n-1)(2 n-2) \cdots(2 n-2 k+2)(2 n-2 k+1)}{2 n \ldots(2 n-2)(2 n-1) \cdots(2 n+2 k+2)} \\
& =\frac{(2 n)!}{(1,2 \cdots 2 n+2 k)(2 n)(2 n-2)(2 n+x)} \\
& \cdots(2 n-2 k+2)
\end{aligned}
$$

$$
\begin{aligned}
&=\frac{(2 n-2 x)!(n)(n-1)(n-2) \cdots(n-k+1)}{(n-k)!} \\
&=\frac{2 n!}{(n-k)!} \\
& P_{n}(x)=\frac{a_{n} x^{n}-\frac{n(n-1)}{2(2 n-1)}+\frac{n(n-1)(n-2)(n-3)}{(n-k)!}}{2^{2}(n)(2 n-1)(2 n-3)} \\
& \text { The }
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{(-1)^{k} n!(2 n-2 k)!2^{k}(n!)}{(n-2 k)!2^{k}(k!) 2 n!(n-k)!} \\
& =\frac{(-1)^{k}(n!)^{2}(2 n-2 k)!}{2 n!k!(n-k)!(n-2 k)!}
\end{aligned}
$$

The eqn (h), $\quad a_{n}=\frac{2 n!}{(n!)^{2} 2^{n}}$.
value $[n / 2]$ is the usual symbol for the greatest $\leq n / 2$

$$
\begin{aligned}
& =\sum_{k=0}^{[n / 2)} \frac{(-1)^{(k} n!}{2^{n} \cdot k!(n-k) n!} \frac{d^{n}}{d x^{n}}\left(x^{2 m 2 k}\right) \\
& \frac{d^{n}}{d x^{n}}\left(x^{2 n-2 k}\right)=\frac{d^{n-1}}{d x^{n-1}} d / d x\left(x^{2 n-2 k}\right) \\
& =\frac{d^{n-1}}{d x^{n-1}}(2 n-2 k) x^{2 n-2 k-1} \\
& =\frac{d^{n-2}}{d x^{n-2}}(2 n-2 k-1)(2 n-2 k) \\
& n^{2 n-2 k-2} \\
& =\frac{d^{n(n-1)}}{d x^{n(n-1)} \cdot(2 n-2 k)(2 n-2 k-1) \cdots} \begin{array}{c}
(2 n-2 k-(n-2)(2 n-2 k) \\
\ldots(n-1) x
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{d}{d x}(2 n-2 k)(2 n-2 k-1) \cdots \\
& (n-2 k+2)\left(x^{n-2 k+1}\right) \\
& =\frac{(2 n-2 k)!}{(n-2 k)!} x^{n-2 k} \\
& =\frac{1}{2^{n} \cdot n!} \frac{d^{n}}{d x^{n}} \sum_{k=0}^{n} \frac{c-n^{k} \cdot n!}{k!(n-k)!} x^{2 m-2 k}
\end{aligned}
$$

［有erms less than n ave 0 For $n^{\text {th }}$ derivations］

$$
\begin{aligned}
& =\frac{1}{2^{n} \cdot n!} \frac{d n}{d x^{n}} \sum_{k=0}^{n} \frac{(-)^{k} n!}{k!(n-k)!}\left(x^{2}\right)^{n-k} \\
& P_{n}(x)=\frac{1}{2^{n} \cdot n!} \frac{d^{n}}{d x^{n}}\left(x^{2}-1\right)^{n}
\end{aligned}
$$

which is called the Rodriques formula for legendre equation

$$
\begin{aligned}
& \text { formula } P_{n}(x)=\frac{1}{2^{n} \cdot n!} \frac{d n}{d x^{n}}\left(x^{2}-1\right)^{n} \\
& P_{0}(x)=1 \quad P_{1}(x)=x, \quad P_{2}(x)=1 / 2\left(3 x^{2}-1\right) \\
& P_{3}(x)=1 / 2\left(5 x^{2}-3 x\right)
\end{aligned}
$$

Problem
The function on the left Side of $\frac{1}{\sqrt{1-2 x t+t^{2}}}=P_{0}(x)+P_{1}(x)+$

$$
\begin{gathered}
\sqrt{1-2 x t+t^{2}} \\
P_{2}\left(x^{2}\right) t^{2}+P_{3}(x) t^{3}+\ldots+P_{n}(x) t^{n} t \cdots \\
\text { function }
\end{gathered}
$$

is called the generating function of the légenalue polynomial Assume that this relation is three and use it (a) To verify that $P_{n}(t)=1$, $\operatorname{Pr}(-1)=(-)^{n}$
(b) Sit $P_{2 n+1}(0)=0$ and

$$
P_{2 n+1}(0)=\frac{(-1)^{n} 1+3 \ldots(2 n-1)}{2^{n}-n!}
$$

proof.

$$
\frac{1}{\sqrt{1-2 x t+t^{2}}}=p_{0}(x)+p_{1}(x)=+\cdots
$$

put $x=1$, were

$$
\begin{aligned}
& \frac{1}{\sqrt{1-2 t_{t+2}}}=P_{0}(1)+P_{1}(1) t_{-1 P_{2}(1)} t^{2}+\cdots \\
& +p_{n}(1) \pm n+\ldots \\
& \frac{1}{t^{2-2 x^{x}} \sqrt{(1-t)^{2}}}=P_{0}(1)+p_{1}(1) t P_{2}(1) t^{2}+\cdots \operatorname{tn}(1) t^{n} \\
& \overbrace{i=1}^{1}(1-t)^{-1}=p_{0}(1)+p_{1}(1) t-1 p_{2}(1) t^{2}+\cdots+p_{n}(1) t^{n} \\
& +\cdots \\
& \left.\begin{array}{c}
-1-6) \\
0-6)
\end{array}\right\} \\
& \left.1+t+t^{2}+\cdots \cdot=p_{0}(1)+p_{1}(1)^{t_{t}}+p_{2} c_{1}\right)^{2}+\cdots \\
& +\left(p_{n}(1) f^{n}+\cdots\right)
\end{aligned}
$$

Equating the coefficients tarn ot th $^{\text {n }}$

$$
P_{n}(1)=1 .
$$

put $x=-1$

$$
\begin{aligned}
& \frac{1}{\sqrt{1+2 t+t^{2}}}=P_{0}(-1)+P_{1}(-1) t+P_{2}(1) t^{2}+\cdots \\
& +p_{n}(-1) t^{n}+\cdots \\
& \frac{1}{\sqrt{(1-2)}}=P_{0}(-1)+P_{1}(-1) t+P_{2}(-1) t^{2}+\cdots \\
& +\nabla_{n}(-1) t^{n}+\cdots \\
& (1+t)^{-1}=p_{0}(-1)+p_{1}(-1) t+p_{2}(-1) t^{2}+\cdots \\
& +\operatorname{Tr}(-1) \pm^{n}+\cdots \cdot \\
& 1-t+t^{2}-t^{3} 4 \ldots=P_{0}(-1)+P_{1}(-1) t+P_{2}(-1) t^{2} \\
& +\cdots p_{n}(-1)^{-2^{n}}+\ldots
\end{aligned}
$$

Equating the coefficients term af $P_{n}(-1)=(-1)^{n}$
(b). put $x=0$ in (1)

$$
\begin{aligned}
& \text { (b) put } x=0 \\
& \frac{1}{\sqrt{(1+t)^{2}}}=P_{0}(0)+P_{1}(0) t+P_{2}(0) t^{2}+\cdots \\
& +P_{n}(0) t^{n}+\cdots
\end{aligned}
$$

$$
+P_{n}(0) \pm^{n}+\cdots
$$

$$
\begin{aligned}
\frac{1}{\left(1+t^{2}\right)^{1 / 2}}=P_{0}(\theta)+P_{1}(0) t+P_{2}(0) & t^{2}+\cdots \\
& +P_{1}(0)
\end{aligned}
$$

$$
+P n(0) \pm^{n}+\ldots
$$

$$
\left(1+t^{2}\right)^{-1 / 2}=p_{0}(0)+p_{t}(0)+\ldots+p_{n}(0) t^{n}+\cdots
$$

$$
\begin{array}{r}
(1+x)^{n}=1-n x+\frac{n(n-1)}{2!} x^{2}-\frac{n(n-1)(n-2) n^{3}}{3!} \\
f \ldots
\end{array}
$$

$$
p_{0}(0)+p_{1}(0) t+p_{2}(0) t^{2}+\cdots+p_{n}(0) t^{n}+\ldots
$$

$$
=1-(1 / 2) t^{2}+\frac{(-1 / 2)(-1 / 2-1) t^{H}}{2!}
$$

$$
-(-1 / 2)(-1 / 2-1)(-3 / 2)
$$

$$
3!
$$

The expression on right side contains only even power of I.

$$
P_{2} n+1(0)=0
$$

Equating coefficient of $t^{2 n}$, we get,

$$
\begin{aligned}
& P_{2 n}(0)=\frac{(-1 / 2)(-1 / 2-1)(-1 / 2-2)}{(-1 / 2-(2 n-1))} \\
& =\frac{(-1)^{n}(1 \cdot 3 \cdot 5!}{2^{n}+n!}
\end{aligned}
$$

1101019
Consider the generating relation

$$
=\sum_{n=0}^{\infty} \operatorname{Pr}(x) t^{n}
$$

(a) By differentiating both sides with respect to ' t ' show that

$$
(x-t) \sum_{n=0}^{\infty} P_{n}(x) t^{n}=\left(1-2 x t+t^{2}\right) \sum_{n=1}^{\infty} n P_{n}(x) t^{n-1}
$$

(b) Equating the coefficients of t^{n} in (a) obtain

$$
(n+1) P_{n+1}(x)=(2 n+1) x P_{n}(x)-n\left(P_{n-1}(x)\right)
$$

(c) Assume that $P_{0}(x)=1, P_{1}(x)=x$ are known and write the recursion formula in (b) to calculate $P_{2}(x), P_{3}(x), P_{4}(x)$ and $P_{5}(x)$ Sol

$$
\begin{equation*}
\frac{1}{\sqrt{1-2 x t+t^{2}}}=\sum_{n=0}^{\infty} P_{n}(x) t^{n} \tag{1}
\end{equation*}
$$

Diff.w.r. to 't' on both sides, we have

$$
\begin{aligned}
& -1 / 2\left(-2 x t+t^{2}\right)^{-3 / 2}(-2 x+2 t)=\sum_{n=1}^{\infty} n P_{n}(x) t^{n-1} \\
& (-1 / 2) \frac{1}{\left(1-2 x t+t^{2}\right)^{3} / 2}(-2 x+2 t)=\sum_{n=1}^{\infty} n P_{n}(x) t^{n-1} \\
& \left(-\frac{1}{2}\right) \frac{1}{\left(1-2 x t+t^{2}\right)^{3} / 2}(-2)(x-t)=\sum_{n=1}^{\infty} n P_{n}(n) t^{n-1} \\
& \frac{x-t}{\sqrt{\left(1-2 x+t^{2}\right)\left(1-2 x t+t^{2}\right)^{2}}}=\sum_{n=1}^{\infty} n P_{n}(n) t^{n-1} \\
& (n-t) \frac{1}{\sqrt{1-2 x t+t^{2}}}=\left(1+2 x t+t^{2} \cdot \sum_{n=1}^{\infty} n P_{n}(n) t^{n-1}\right. \\
& (x-t) \sum_{n=0}^{\infty} P_{n}(x)^{n}=1+2 n t+t^{2} \sum_{n=1}^{\infty} n P_{n}(x) t^{n-1}[b y \text { © } \quad[
\end{aligned}
$$

(b) coefficients of t^{n} in L.H.S
$=$ coefficient of ϵ^{n} in $(x-t)\left[P_{0}(x)+P_{1}(x) t\right.$

$$
\begin{aligned}
+P_{2}(x) t^{2} & +\cdots+P_{n-1}(x) t^{n-1} \\
& \left.+P_{n}(n) t^{n}+\cdots\right]
\end{aligned}
$$

$=$ welficient of f^{n} in $\left(n-t \sum_{n=0}^{\infty} P_{n}(x) t^{n}\right.$

$$
=x P_{n}(x)-P_{n-1}(n)
$$

coefficient of t^{n} in R.H.S.

$$
\begin{aligned}
& \text { efficient of } t^{n} \text { on } \\
& =\text { coefficient of } t^{n} \text { is } 1-2 x t+t^{2} \sum_{n=1}^{\infty} n P_{n}(x) t^{n-1}
\end{aligned}
$$

$=$ coefficient of t^{n} is $\left(1-2 x t+t^{2}\right)$

$$
\begin{aligned}
& {\left[P_{1}(n)+2 P_{2}(x) t+3 P_{3}(x) t^{2}+\cdots+\right.} \\
& (n-1) P_{n-1}(x) t^{n-2}+\cdots+n P_{n}(n) t^{n-1} \\
& \left.+(n+1) P_{n+1}(x) t^{n}\right] \\
& =(n+1) P_{n+1} x-2 x_{n} P_{n}(x)+(n-1) P_{n-1}(n)
\end{aligned}
$$

Equating the coefficients.

$$
\begin{aligned}
& x P_{n}(x)-P_{n-1}(x)=(n+1) P_{n+1}(x)-2 x^{n} P_{n}(x) \\
&+(n-1) P_{n-1}(x) \\
& \Rightarrow(n+1) P_{n+1}(x)= x P_{n}(x)-P_{n-1}(x)+2 p_{n} P_{n}(x) \\
&-(n-1) P_{n-1}(x) \\
&= x P_{n}(x)(1+2 x)-P_{n-1}(x) \\
&(x+n-x) \\
&= x P_{n}(x)(2 n+1)-P_{n-1}(x)(n) \\
&(n+1) P_{n+1}(x)=(2 n+1) \times P_{n}(x)-n P_{n-1}(x) \rightarrow 0
\end{aligned}
$$

c) Given $P_{0}(x)=1, P_{1}(x)=x$.

$$
\begin{aligned}
& n=1, \\
& \text { (1) } \Rightarrow 2 P_{2}(x)=3 x P_{1}(x)-P_{0}(x) \\
&=3 x x-P_{1} \\
&=3 x^{2}-1 \\
& P_{2}(x)=\frac{3 x^{2}-1}{2}
\end{aligned}
$$

$$
\begin{aligned}
& n=2 \text {, } \\
& 9 p_{3}(x)=5 x p_{2}(x)-2 p_{1}(x) \\
& =5 x\left(\frac{3 x^{2}-1}{2}\right)-2(x) \\
& =\frac{15 x^{3}-5 x}{2}-2 x \\
& =\frac{15 x^{3}-5 x-4 x}{2} \\
& 3 P_{3}(x)=\frac{15 x^{3}-9 x}{2} \\
& P_{3}(x)=\frac{15 x^{3}-9 x}{6} \\
& n=3 \text {, } \\
& P_{4}(x)=7 x P_{3}(x)-3 P_{2}(x) \\
& =7 x\left(\frac{15 x^{3}-9 x}{6}\right)-3\left(\frac{3 x^{2}-1}{2}\right) \\
& =\frac{105 x^{4}+63 x^{2}}{6}-\frac{9 x^{2}-3}{2} \\
& =\frac{105 x^{4}-63 x^{2}-27 x^{2}+9}{6} \\
& =\frac{105 x^{4}-90 x^{2}+9}{6} \\
& =\frac{x^{\prime}\left(35 x^{4}+30 x^{2}+3\right)}{t_{2}} \\
& 4 P_{4}(x)=\frac{35 x^{4}-30 x^{2}+3}{2} \\
& P_{4}(x)=\frac{35 x^{4}-30 x^{2}+3}{8}
\end{aligned}
$$

$$
\begin{aligned}
& n=4, \\
& 5 P_{5}(x)=9 x P_{4}(x)-4 P_{3}(x) \\
&=\frac{9 x\left(35 x^{4}-30 x^{2}+3\right)}{8}-\frac{x^{2}\left(15 x^{3}-a x\right)}{63} \\
&=\frac{315 x^{5}-270 x^{3}+27 x}{8}-\frac{30 x^{3}-18 x}{2} \\
&=\frac{315 x^{5}-270 x^{3}+27 x}{8}-\frac{\beta\left(10 x^{3}-6 x\right)}{8} \\
& 5 P_{5}(x)=\frac{315 x^{5}-270 x^{3}+27 x-80 x^{3}+48 x}{8} \\
& P_{5}(x)=\frac{315 x^{5}-350 x^{3}+75 x}{8 \times 5} \\
& P_{5}(x)=\frac{315 x^{5}-350 x^{3}+75 x}{40} .
\end{aligned}
$$

istuda
Legendve Sevies Sfate and Derive!?
we have the legendve
-2. Polynomial $P_{0}(x)=1, P_{1}(x)=x$, $P_{2}(x)=\frac{3 x^{2}-1}{2}, \quad P_{3}(x)=\frac{5 x^{3}-3 x}{2}$ and So on.

$$
\left.\begin{array}{l}
P_{n}(x)=\frac{1}{2^{n} \cdot n!} \frac{d^{n}}{d x^{n}}\left(x^{2}-1\right)^{n} \\
P_{2}(x)=\frac{3 x^{2}-1}{2} \\
3 x^{2}-1=2 p_{2}(x) \\
3 x^{2}=1+2 p_{2}(x) \\
x^{2}=\frac{1}{3}\left(1+2 p_{2}(x)\right) \\
5 x^{3}-3 x \\
2
\end{array}\right\}
$$

Generally, we can write x^{n} us linear combination of legendre polynomial

$$
\begin{aligned}
P(x)= & b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3} \\
= & b_{0}\left(p_{0}(x)+b_{1} p_{1}(x)+b_{2}\left[\frac{p_{0}(x)}{3}+\frac{2 p_{2}(x)}{3}\right]\right. \\
& +b_{3}\left[\frac{3 p_{1}(x)}{5}+\frac{z p_{3}(x)}{5}\right]
\end{aligned}
$$

$$
\begin{aligned}
&= p_{0}(x)\left[b_{0}+\frac{b_{2}}{3}\right]+p_{1}(x)\left[b_{1}+\frac{3 b_{3}}{5}\right] \\
&+p_{2}(x)\left[\frac{2 b_{2}}{3}\right]+p_{3}(x)\left[\frac{2 b_{3}}{5}\right] \\
&= a_{0} p_{0}(x)+a_{1} p_{1}(x)+a_{2} p_{2}(x) \\
&+a_{3} p_{3}(x) \\
& P(x)= \sum_{n=0}^{3} a_{n} p_{n}(x)
\end{aligned}
$$

In general any polynomial
of deane in say $P(x)$ car be written as

$$
\begin{aligned}
P(x)=a_{0} P_{0}(x)+a_{1} P_{1}(x) & +a_{2} P_{2}(x)+\cdots \\
& +a_{n} P_{n}(x)
\end{aligned}
$$

Then $f(x)$ is arbitrary function then the legendre polynomial is

$$
\begin{aligned}
& f(x)= a_{0} p_{0}(x)+a_{1} p_{1}(x) \\
&+a_{2} p_{2}(n)+\cdots \\
&+a_{n} p_{n}(x)+\cdots \\
& f(x)= \sum_{n=0}^{\infty} a_{n} p_{n}(x)
\end{aligned}
$$

This is called legendre

Series.
To find a_{n} :-

$$
\begin{aligned}
f(x) & =\sum_{n=0}^{\infty} a_{n} p_{n}(x) \\
\int_{-1}^{1} f(x) p_{m}(x) d x & =\int_{-1}^{1} \sum_{n=0}^{\infty} a_{n} p_{n}(x) p_{r n}(x) d x \\
& =\sum_{n=0}^{\infty} a_{m}\left(\frac{2}{2 m+1}\right) \text { (by Orthogand } \\
& =a_{m}\left(\frac{2}{2 m+1}\right) \\
a_{m} & =\frac{2 m+1}{2} \int_{-1}^{1} f(x) p_{m}(x) d x \\
a_{n} & =\frac{2 n+1}{2} \int_{-1}^{1} f(x) p_{n}(x) d x \\
a_{n} & =(n+1 / 2) \int_{-1}^{1} f(x) p_{n}(x) d x
\end{aligned}
$$

Least square approximation

Let $f(x)$ be a function defined on the interval $-1 \leq x \leq 1$, approximate $f(x)$ as closely as Possible in the sense of least squares by polynomials $P(x)$ of degree $\leq n$.
proof:-
consider,

$$
I=\int_{-1}^{1}(f(x)-p(x))^{2} d x
$$

which represents the sum ot squares of derivations of $P(x)$. from $f(x)$.

Now to minimize the value ot this intequal by suitable choice of $p(x)$

For this consider the minimizing polynomial which is the

Sure at first $(n+1)$ terms of legendre Series.

$$
\begin{aligned}
& f(x)=\sum_{n=0}^{\infty} a_{n} P_{n}(x), \\
& P(x)=\sum_{n=0}^{n} a_{k} P_{k}(x) \\
& \therefore P(x)=a_{0} p_{0}(x)+a_{1} p_{1}(x)+\cdots+a_{n} P_{n}(x) \\
& \text { where } a_{n}=n+1 / 2 \int_{-1}^{1} f(x) p_{n}(x) d x
\end{aligned}
$$

Now all the polynomial of dequee cn ave expressible in the form

$$
\begin{aligned}
& b_{0} P_{0}(x)+b_{1} P_{1}(x)+\cdots+b_{n} P_{n}(x) \\
& I=\int_{-1}^{1}(f(x)-P(x))^{2} d x \\
&=\int_{-1}^{1}\left(f(x)-\sum_{n=0}^{n} b_{k} P_{k}(x)\right)^{2} d x \\
&=\int_{-1}^{1} f(x)^{2} d x+\int_{-1}^{1}\left(\sum_{n=0}^{n} b_{k} P_{k}(x)\right)^{2} d x \\
&-2 \int_{-1}^{1} f(x) \sum_{k=0}^{n} b_{k} P_{k}(x) d x
\end{aligned}
$$

$$
\begin{align*}
& \text { (20) } P_{m} \Rightarrow \frac{d}{d x}\left[\left(1-x^{2}\right) P_{n}^{\prime}\right] P_{m}+n(n+1) P_{m} P_{n} \tag{H}\\
& \text { 3' }
\end{align*}
$$

$\Rightarrow \int_{-1}^{1} \operatorname{Pm}(x) \operatorname{Pr}(x)=0$, aam

Problem:(3)
If the generating series
$\frac{1}{\sqrt{1-2 x t+t^{2}}}$ is squared and integrated
from $x=-1$ to $x=1$ then the.
first part of orthogonal property implies that,

$$
\int_{-1}^{1} \frac{d x}{1-2 x t+t^{2}}=\sum_{n=0}^{\infty} \frac{2}{2 n+1} t^{2 n}
$$

Establish the second part of the orthogonal Property by showing that the integral on the - left has the value $\sum_{n=0}^{\infty} \frac{2}{2 n+1} \cdot t^{2 n}$.

Son:-
consider,

$$
\begin{array}{r}
\frac{1}{\sqrt{1-2 x t+t^{2}}}=P_{0}(x)+P_{1}(x)+p_{2}(x) t^{2}+\cdots \\
\quad+p_{n}(x) t^{n}+\cdots
\end{array}
$$

$$
\begin{aligned}
& \frac{1}{\sqrt{1-2 x t+t^{2}}}=\left[P_{0}(x)+P_{1}(x) t+P_{2}(x) t^{2}+\cdots\right. \\
&\left.+P_{n}(x) t^{n}+\cdots\right]^{2} \\
&= {\left[P_{0}^{2}(x)+P_{1}^{2}(x) t^{2}+\cdots+P_{n}^{2}(x) t^{2 n}\right] } \\
&+2\left[P_{0}(x) P_{1}(x) t+\cdots+P_{1}(x) P_{2}(x)\right. \\
& t^{5}+\cdots
\end{aligned}
$$

[first Orthoganal Property]

$$
\int_{-1}^{1} \frac{d x}{\left(-2 x t+t^{2}\right.}=\int_{-1}^{1} \sum_{n=0}^{\infty}\left(P_{n}(x)\right)^{2} t^{2 n} d x
$$

(using orthogonal property)

$$
\begin{aligned}
& \int_{-1}^{1}\left(P_{n}(x)\right)^{2} d x=\frac{2}{2 n+1} \\
& \Rightarrow \int_{-1}^{1} \frac{d x}{1-2 x+t t^{2}}=\sum_{n=0}^{\infty} \frac{2}{2 n+1} t^{2 n}
\end{aligned}
$$

Unit - IV

Bessel function:-
The Differential equation is $x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-p^{2}\right) y=0$. Where p is non-negative its called the Bessal equations: Its solution is known as the Bessal function.
0.0. Solve Bessal equation:-

$$
\begin{align*}
& x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-p^{2}\right) y=0 \tag{1}\\
& y^{\prime \prime}+\frac{y^{\prime}}{x}+\frac{\left(x^{2}-p^{2}\right)}{x^{2}} y=0
\end{align*}
$$

there $P(x)=\frac{1}{x}$ and $Q(x)=\frac{x^{2}-P^{2}}{x^{2}}$ $x=0$ is a singular point

$$
\begin{aligned}
& \text { There } x_{0}=0 . \\
& x P(x)=x, 1 / x=1 \Rightarrow x(14 x) \\
& x^{2} \cdot Q(x)=x^{2}\left(\frac{x^{2}-p^{2}}{x^{2}}\right)=x^{2}-p^{2}
\end{aligned}
$$

x_{0} is a regular Singular point.

The initial equation

$$
m(m-1)+m p_{0}+q_{0}=0
$$

Here $p_{0}=1$ and $q_{0}=-p^{2}$

$$
\begin{gathered}
m(m-1)+m-p^{2}=0 \\
m^{2}-m+m-p^{2}=0 \\
m^{2}-p^{2}=0 \\
m^{2}=p^{2} \\
m= \pm p .
\end{gathered}
$$

Take $m= \pm P$, then the equation has the soin of the form.

$$
\begin{aligned}
& y=x^{R} \cdot \sum_{n=0}^{\infty} a_{n} x^{n} \rightarrow * \\
& y=\sum_{n=0}^{\infty} a_{n} x^{n+p} \rightarrow(3) .
\end{aligned}
$$

Put $n=r-2$

$$
\begin{align*}
& y=\sum_{n=0}^{\infty} a_{n-2} x^{n+p-2} \tag{4}\\
& y^{\prime}=\sum_{n=1}^{\infty}(n+p) a_{n} x^{n+p-1}
\end{align*}
$$

$$
\begin{align*}
x y^{\prime} & =\sum_{n=1}^{\infty}(n+p) a_{n} x^{n+p} \rightarrow \text { (5) } \\
y^{\prime \prime} & =\sum_{n=2}^{\infty}(n+p)(n+p-1) a_{n} x^{n+p-2} \\
x^{2} y^{\prime \prime} & =\sum_{n=2}^{\infty}(n+p)(n+p-1) a_{n} x^{n+p} \rightarrow \tag{6}\\
x^{2} y & \left.=x^{2} \sum_{n=0}^{\infty} a_{n-2} x^{n+p-2}[b y+1)\right] \\
x^{2} y & =\sum_{n=0}^{\infty} a_{n-2} x^{n+p} \rightarrow[8] \tag{7}\\
-p^{2} y & =-p^{2} \sum_{n=0}^{\infty} a_{n} x^{n+p}
\end{align*}
$$

Substitude (5).(6), (7), (8) in (1).

$$
\begin{gathered}
\sum_{n=2}^{\infty}(n+p)(n+p-1) a_{n} x^{n+p} \\
+\sum_{n=1}^{\infty}(n+p) a_{n} x^{n+p}+\sum_{n=0}^{\infty} a_{n-2} x^{n+p} \\
-p^{2} \sum_{n=0}^{\infty} a_{n} x^{n+p}=0
\end{gathered}
$$

Equating canefficients of x^{n+p} to zeno,

$$
\begin{aligned}
& \Rightarrow(n+p)(n+p-1) a_{n}+(n+p) a_{n}+a_{n-2} \\
&-p^{2} a_{n}=0
\end{aligned}
$$

$$
\begin{array}{r}
\Rightarrow(n+p)(n+p-1) a_{n}+(n+p) a_{n}-p^{2} a_{n} \\
=-a_{n-2} \\
\Rightarrow \quad a_{n}\left[(n+p)(n+p-1)+(n+p)-p^{2}\right] \\
=-a_{n-2} \\
\Rightarrow \quad a_{n}\left[n^{2}+n p-n+p n+p^{2}-p+n+p-p^{2}\right] \\
=-a_{n-2} \\
\Rightarrow \quad a_{n}\left[n^{2}+2 p n\right]=-a_{n-2} \\
a_{n}=\frac{-a_{n-2}}{n^{2}+2 p r} \rightarrow \text { (p }
\end{array}
$$

we know that $a_{0} \neq 0$.

$$
\text { Take } a_{1}=0 \text {. }
$$

put $n=2$, substitude in (4).

$$
\begin{aligned}
& a_{2}=\frac{-a_{2-2}}{2^{2}+2(2)(p)}=\frac{-a_{0}}{4+4 p} \\
& a_{2}=\frac{-a_{0}}{2(2+2 p)}
\end{aligned}
$$

put $n=3$, Substitude in (14).

$$
a_{3}=\frac{-a_{3-2}}{3^{2}+2(3) p}=\frac{-a_{1}}{a+6 p}
$$

$$
\begin{aligned}
& =\frac{-a_{1}}{3(3+2 p)}=0 \\
& a_{3}=0
\end{aligned}
$$

put $n=4$; suts stitude in (x)

$$
\begin{aligned}
a_{H} & =\frac{-a_{2}}{16+8 p} \\
& =\frac{-\left(\frac{-a_{0}}{2(2+2 p)}\right)}{(6+8 p} \\
& =\frac{a_{0}}{2(2+2 p)} \\
a_{4} & =\frac{a_{0}}{2 \cdot 4 \cdot(2+2 p)(H+4 p)} \\
a_{5}=a_{1} & =a_{a}=\frac{1}{2}=0 .
\end{aligned}
$$

put $n=6$,

$$
\begin{aligned}
a_{6} & =\frac{-a_{6-2}}{36+12 p}=\frac{-a_{4}}{6(6+2 p)} \\
& =\frac{-a_{0}}{2 \cdot 4 \cdot 6(2+2 p)(4+2 p)(6+2 p)}
\end{aligned}
$$

The soln is,

$$
\begin{aligned}
B y & \Rightarrow y=x^{p}\left[a_{0}+a_{1} x+a_{2} x^{0}+\cdots\right] \\
y= & x^{p}\left[a_{0}-\frac{a_{0}}{2(2+2 p)}\right] x^{2} \\
& +\left[\frac{a_{0}}{2 \cdot \mu(2+2 p)(H+2 p)}\right] x^{4} \\
& -\left(\frac{a_{0}}{2 \cdot 1+6(2+2 p)(1+2 p)(6+2 p)}\right) x^{6}+\cdots \\
y= & a_{0} x^{p}\left[1-\frac{x^{2}}{2^{2}(1+p)}+\frac{x^{4}}{2^{4} \cdot 2!(1+p)(2+p)}\right. \\
y & x^{6} \cdot 3!(1+p)(2+p)(3+p) \\
y & =a_{0} x^{p} \sum_{n=0}^{\infty} \frac{x^{6}(1)^{n} x^{2 n}}{2^{2 n} \cdot n!(p+1)(p+2)(p+3)}
\end{aligned}
$$

Definition of $\overline{g g}(x)$
The Bessal function of the first kind of the order P;
denoted by $I_{p}(x)$ is defined by putting $a_{0}=\frac{1}{2^{p} \cdot p!}$

$$
\begin{aligned}
J_{p}(x) & =\frac{1}{2^{p} \cdot p!} x^{p} \sum_{n=0}^{\infty} \frac{(-)^{n} \cdot x^{2 n}}{2^{2 n} \cdot n!(p+1)(p+2)} \\
& =\frac{1}{2^{p}} x^{p} \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{2^{2 n}-n!(p+n)!++(p+n)} \\
& =\frac{x^{2 n+p}}{2^{2 n+p}} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!(p+n)!} \\
& =\frac{\sum_{n=0}^{\infty}(-1)^{n}\left(\frac{x}{2}\right)^{2 n+p}}{n!(p+n)!} \\
J_{p}(x) & =\sum_{n=0}^{\infty}(-1)^{n}\left(\frac{x}{2}\right)^{2 n+p}
\end{aligned}
$$

putting $\boldsymbol{P}=0$.
Bessal function of order $P=0$.

$$
J_{0}(x)=\frac{\sum_{n=0}^{\infty}(-)^{n}\left(\frac{x}{2}\right)^{2 n}}{n!n!}
$$

$$
\begin{aligned}
& =\frac{\sum_{n=0}^{\infty}(-1)^{n}\left(\frac{x}{2}\right)^{2 n}}{(n!)^{2}} \\
& =1-\frac{(x / 2)^{2}}{1!}+\frac{(x / 2)^{n}}{(21)^{2}}-\frac{(n / x)^{6}}{(3!)^{2}}+\cdots \\
J_{0}(x) & =1-\frac{x^{2}}{2^{2}}+\frac{x^{1}}{2^{2} x^{2}}-\frac{x^{6}}{2^{2} \cdot 4^{2} \cdot 6^{2}}+\cdots
\end{aligned}
$$

Basal function of order $P=1$

$$
\begin{aligned}
& J_{1}(x)=\frac{\sum_{n=0}^{\infty}(-1)^{n}\left(\frac{x}{2}\right)^{2 n+1}}{n!(1+n)!} \\
&=\frac{x / 2}{1!}-\frac{(x / 2)^{3}}{(1!2!}+\frac{(x / 2)^{5}}{2!3!}-\frac{(x / 2)^{7}}{3!4!}+\cdots \\
& J_{1}(x)=\frac{x}{2}-\frac{1}{1!2!}(x / 2)^{3}+\frac{1}{2!3)}(x / 2)^{5} \\
&-\frac{1}{3!4!}\left(\frac{x}{4}\right)^{7}
\end{aligned}
$$

Gamma functions:-
The Gamma function $\Gamma_{(P)}$ is defined as $\sqrt{(R)}=\int_{0}^{\infty} e^{-t} t^{P-1} d t$

Result:-

$$
\begin{aligned}
\sqrt{(p+1)} & =p \sqrt{(p)} \\
\sqrt{(p+1)} & =\int_{0}^{\infty} e^{-t} t^{p+1-1} d t \\
& =\int_{0}^{\infty} e^{-t} t^{p} d t . \\
& =\left[-t^{p} e^{-t}\right]_{0}^{\infty}+\int_{0}^{\infty} e^{-t} t^{p-1} p d t \\
& =\theta+p \int_{0}^{\infty} e^{-t} t^{p-1} d t \\
\sqrt{(p+1)} & =p \sqrt{(p)}[b y(0)]
\end{aligned}
$$

$$
u=t^{\mathbb{R}}
$$

$$
\begin{gathered}
d u=P^{P^{\prime}} \\
P t^{1 / 2}
\end{gathered}
$$

$$
v=e^{-t} d t
$$

$$
\begin{aligned}
& v=-e^{-t} \\
& d v
\end{aligned}
$$

2.) Prove that, $\sqrt{(n+1)}=n$!

By above result $\quad(\therefore \sqrt{(P+1)}=P \sqrt{(P)})$

$$
\left.\begin{array}{rl}
\sqrt{(n+1)} & =n \sqrt{(n)} \\
& =n(n-1) \sqrt{(n-1)} \\
& =n(n-1)(n-2) \sqrt{(n-2)} \\
& =n(n-1)(n-2)(n-3) \sqrt{(n-3)} \cdots \\
& =n(n-1)(n-2)(n-3)(n-1) \cdots \sqrt{(1)}) \\
\sqrt{(n+1)} & =n!
\end{array}(\therefore \sqrt{(1)}=1)\right)
$$

3.) Prove that $(1)=1$.

$$
\begin{aligned}
\Gamma(p) & =\int_{0}^{\infty} e^{-t} t^{p-1} d t \\
\sqrt{(1)} & =\int_{0}^{\infty} e^{-t} t^{1-1} d t \\
& =\int_{0}^{\infty} e^{-t} t^{0} d t \\
& =\int_{0}^{\infty} e^{-t} d t \\
& =\left[\frac{e^{-t}}{-1}\right]_{0}^{\infty} \quad\left[\because \int \cdot e^{x} d x=\frac{e x}{1}\right. \\
& =\left(-e^{-t}\right]_{0}^{\infty}=-e^{-\infty}+e^{-0} \\
& =0+1=0 \\
\Gamma(1) & =1 .
\end{aligned}
$$

(1) Prove that $\sqrt{(1 / 2)}=\sqrt{\pi}$

0,0

$$
\begin{align*}
\sqrt{(P)} & =\int_{0}^{\infty} e^{t} t^{P-1} d t \tag{1}\\
\sqrt{(1 / 2)} & =\int_{0}^{\infty} e^{-t} t^{1 / 2-1} d t \\
& =\int_{0}^{\infty} e^{-t} t^{-1 / 2} d t
\end{align*}
$$

put $t=x^{2}, d t=2 x d x$.

$$
\begin{aligned}
& \pm=0 \Rightarrow x=0 \text {. } \\
& t=\infty \quad \Rightarrow x=\infty \text {. } \\
& \Gamma(1 / 2)=\int_{0}^{\infty} e^{-x^{2}} x^{2(-1 / 2)} 2 x d x \\
& =\int_{0}^{\infty} e^{-x^{2}} x^{-1} 2 x d x=\int_{0}^{\infty} e^{-x^{2}} 2 x^{1-1} d x=\int_{0}^{\infty} e^{-x^{2}} \cdot 2 d x \\
& \Gamma(1 / 2)=2 \int_{0}^{\infty} e^{-x^{2}} d x \\
& (\sqrt{(1 / 2)})^{2}=4 \int_{0}^{\infty} \int_{0}^{\infty} e^{-\left(x^{2}+y^{2}\right)} d x d y . \\
& x=r \cos \theta=\int d y / d r=-r \sin \theta+\cos \theta \text {. } \\
& y=r \sin \theta \Rightarrow d y \operatorname{cr}=r \cos \theta+i \sin \theta \\
& d x d y=r \cdot d r d \theta \quad \frac{d x}{d r} \cdot \frac{d y}{d x}=(-r \sin \theta+\cos \theta) \\
& x=0 \Rightarrow r=0, x=\infty \Rightarrow r=\infty \text {. } \quad \frac{d x}{d \theta}=-r \sin \theta \\
& y=0 \Rightarrow \theta=0, \quad y=\infty \Rightarrow \theta=\pi / 2 \quad \frac{d y}{d \theta}=1 \cos \theta \\
& (\sqrt{(1 / 2)})^{2}=4 \int_{0}^{\pi / 2} \int_{0}^{\infty} e^{-r^{2}} r d r \cdot d \theta \quad \frac{d y}{d r}=\frac{r}{r} \frac{\cos \theta}{\sin \theta} \\
& =H \int_{0}^{\pi / 2} d \theta \int_{0}^{\infty} e^{-r^{2}} r \cdot d r \\
& =x[\theta]_{0}^{\pi / 2} \int_{0}^{\infty} e^{-r^{2}} \cdot r d r
\end{aligned}
$$

$$
\begin{aligned}
& =r(\pi / 2) \int_{0}^{\infty} e^{-r^{2}} \cdot r d r=2 \pi \int_{0}^{\infty} e^{-r^{2}} r d r \\
& =2 \pi \cdot 1 / 2 \int_{0}^{\infty} e^{-r^{2}}-2 r d r \\
& =\pi \int_{0}^{\infty} e^{-r^{2}} d\left(r^{2}\right) \\
& =\pi\left[-e^{-r^{2}}\right]_{0}^{\infty} \\
& =\pi\left[-e^{-\infty}+e^{0}\right]=\pi \\
(\sqrt{(1 / 2)}))^{2} & =\pi \int_{0}^{\infty} e^{-r^{2}} 2 x d r \\
& =\pi \\
\sqrt{(1 / 2)} & =\sqrt{(\pi)}
\end{aligned}
$$

(4) $(n+1 / 2)!=\frac{(2 n+1)!}{2^{2 n+1}(n!)} \cdot \sqrt{\pi}$

Soln

$$
w \cdot k-T \quad \sqrt{(n+1)}=n!
$$

$$
\begin{aligned}
(n+1 / 2)! & =\sqrt{n+1 / 2+1} \\
& =(n+1 / 2) \sqrt{(n+1 / 2)} \\
& =(n+1 / 2)(n+1 / 2-1) \sqrt{n+1 / 2-1} \\
& =(n+1 / 2)(n+1 / 2-1)(n+1 / 2-2) \sqrt{n+1 / 2-2}
\end{aligned}
$$

$$
\begin{aligned}
& =(n+1 / 2)(n+1 / 2) \cdots 5 / 2 \cdot 3 / 2 \cdot 1 / 2 \sqrt{(1 / 2)} \\
& =\left(\frac{2 n+1}{2}\right)\left(\frac{2 n-1}{2}\right) \cdots 5 / 2 \cdot 3 / 2 \cdot 1 / 2 \sqrt{\pi} \\
& \left.=\frac{(2 n+1}{2}\right)\left(\frac{2 n-1}{2}\right) \cdots 5 / 2 \cdot 3 / 2 \cdot 1 / 2 \sqrt{\pi} \\
& =\frac{(2 n+1)(2 n-1) \cdots 5 \cdot 3 \cdot 1}{2 \cdot 2 \cdots} \sqrt{\pi} \\
& =\frac{(2 n+1)(2 n)(2 n-1) \cdots \cdot 2}{(2 n+1)(2 n) \cdot(2 n-2)(2 n-4+1) \cdots \cdot 4 \cdot 2} \sqrt{\pi} \\
& =\frac{(2 n+1)(2 n)(2 n-1) \cdots 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{(2 n+1)(2 n)(2 n-2)(2 n-4) \cdots \cdot 4 \cdot 2} \sqrt{\pi} \\
& =\frac{(2 n+1)!}{2^{2 n+1} \cdot 2^{n}(n!)} \sqrt{\pi} \\
& =\frac{(2 n+1)!4}{2^{n+1} \cdot(n!)} \sqrt{(\pi)} \\
(n+1 / 2)! & =\frac{(2 n+1)!}{2 n+1) \cdot(n!)} \sqrt{\pi}
\end{aligned}
$$

(b.)

$$
(n-1 / 2)!=\frac{(2 n)!}{2^{2 n} \cdot n!} \sqrt{\pi}
$$

Soln.

$$
\begin{aligned}
& \text { w.kJT } \sqrt{(n+1)}=n \text { : } \\
& (n-1 / 2)!=\sqrt{(n-1 / 2+1)} \\
& =(n-1 / 2) \sqrt{(n-1 / 2)} \\
& =(n-1 / 2)(n-3 / 2) \sqrt{(n-3 / 2)} \\
& =(n-1 / 2) \cdot(n-3 / 2)(n-5 / 2) \sqrt{(n-5 / 2)} \\
& =(n-1 / 2)(n-3 / 2)-3 / 2+1 / 2 / \pi \\
& =\left(\frac{2 n-1}{2}\right)\left(\frac{2 n-3}{2}\right) \cdots \cdots 3 / 2 \cdot 1 / 2 \sqrt{\pi} \\
& =\frac{(2 n-1)(2 n-3) \cdots 3 \cdot 1}{2,2 \ldots 2,2 \cdot 2} \sqrt{\pi} \\
& =\frac{(2 n)(2 n-1)(2 n-2) \cdots 4 \cdot 3 \cdot 2}{2^{n}(2 n)(2 n-2)(2 n-4) \cdots 4 \cdot 2} \sqrt{\pi} \\
& =\frac{(2 n)!}{2^{n}-2^{n}(n!)} \sqrt{\pi} \\
& (n-1 / 2)!=\frac{(2 n)!}{2^{2 n} \cdot(n!)}
\end{aligned}
$$

(5a.) $J_{1 / 2}(x)=\sqrt{\frac{2}{\pi x}} \sin x$
Soln.
$w \cdot k \pi \quad J_{p}(n)=\sum_{n=0}^{\infty} \frac{(-)^{n}(n / 2)^{n+p}}{n!(p+n)!}$
$J_{1 / 2}(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}(x / 2)^{2 n+1}(2}{n!(n+1 / 2)!}$
$=\sum_{n=0}^{\infty} \frac{(-)^{n} x^{2 n+1 / 2}}{n!2^{2 n+1 / 2} \frac{(2 n+1)!\sqrt{\pi}}{2^{2 n+1}}}[$ by $+(a)]$
$=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n-1 / 2+1}}{2^{2 n+1} 2^{-1 / 2} \frac{(2 n+1)!\sqrt{11}}{2^{2 n+1}}}$
$=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1} x^{-1 / 2}}{2^{-1 / 2}(2 n+1)!\sqrt{\pi}}$
$=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1} \sqrt{2}}{\sqrt{x}(2 n+1)!\sqrt{\pi}}$

$$
=\sqrt{\frac{2}{\pi x}} \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}
$$

$$
=\sqrt{\frac{2}{\pi x}}\left[x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots \cdot\right]
$$

$$
J_{1 / 2}(x)=\sqrt{\frac{2}{\pi x}} \sin x
$$

b.) $J_{-1 / 2}(x)=\sqrt{\frac{2}{\pi x}} \cos x$

Soln:
w. K. T,

$$
\begin{aligned}
& J_{p}(x)=\frac{\sum_{n=0}^{\infty}(-1)^{n}(n / 2)^{2 n+p}}{n!(p+n)!} \\
& J_{-1 / 2}(x)=\frac{\sum_{n=0}^{\infty}(-1)^{n} \cdot(x / 2)^{2 n-1 / 2}}{n!(n-1 / 2)!} \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n-1 / 2}}{2^{2 n-1 / 2} n!(n-1 / 2)!} \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n} \cdot x^{-1 / 2}}{2^{2 n} \cdot(2)^{-1 / 2} \cdot \frac{(2 n)!}{2^{2 n}} \sqrt{\pi}} \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n}\left(x^{2 n}\right) \sqrt{2}}{\sqrt{x}(2 n)!\sqrt{\pi}} \\
& =\sqrt{\frac{2}{x \pi}} \cdot \sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!} \\
& =\sqrt{\frac{2}{x \pi}}\left(1-\frac{x^{2}}{2!}+\frac{x^{4}}{x!}-\cdots\right) \\
& J_{-1 / 2}(x) \quad=\sqrt{\frac{2}{2 \pi}} \cos x / 1 .
\end{aligned}
$$

6a.) $\frac{d}{d x} J_{0}(x)=-J_{1}(x)$
solr

$$
w \cdot k \cdot T_{1},
$$

$$
\begin{aligned}
J_{0}(x) & =1-\frac{x^{2}}{2^{2}}+\frac{x^{4}}{2^{2} \cdot 4^{2}}-\frac{x^{6}}{2^{2} \cdot x^{2} \cdot 6^{2}}+\cdots \\
J_{1}(x) & =\frac{x}{2}-\frac{1}{1!2!}\left(\frac{x}{2}\right)^{3}+\frac{1}{2!3!}\left(\frac{x}{2}\right)^{5}-\cdots \\
\frac{d}{d x} J_{0}(x) & =\frac{d}{d x}\left[1-\frac{x^{2}}{2^{2}}+\frac{x^{4}}{2^{2} \cdot x^{2}}-\frac{x^{6}}{2^{2} \cdot H^{2} 6^{2}}+\cdots\right] \\
& =-\frac{2 x}{2^{2}}+\frac{4 x^{3}}{2^{2} \cdot 4^{2}}-\frac{6 x^{5}}{2^{2} \cdot x^{2} \cdot 6^{2}} \\
\frac{d}{d x} J_{0}(x) & =\frac{-x}{2}+\frac{x^{3}}{2^{3}} \cdot \frac{1}{1!2!}+\frac{x^{5}}{2^{5}}+\frac{1}{2!3!} \cdots \\
& =-\left[\frac{x}{2}-\frac{1}{1!2!}\left(\frac{x}{2}\right)^{3}+\frac{1}{2!3!}\left(\frac{x}{2}\right)^{5}+\cdots\right] \\
\frac{d}{d x} J_{0}(x) & =-J_{1}(x)
\end{aligned}
$$

(b) $\frac{d}{d x}[x: J,(x)]=x J_{0}(x)$

Soln.

$$
w \cdot k \cdot T, \quad J_{0}(x)=1-\frac{x^{2}}{2^{2}}+\frac{x^{x}}{2^{2} \cdot x^{2}}-\frac{x^{6}}{2^{2}-x^{2} \cdot 6^{2}}+\cdots
$$

$$
\begin{aligned}
& J_{1}(x)= \frac{x}{2}-\frac{1}{1!2!}\left(\frac{x}{2}\right)^{3}+\frac{1}{2!3!}\left(\frac{x}{2}\right)^{4}+\cdots \\
& x J_{1}(x)= x\left[\frac{x}{2}-\frac{1}{!!2!}\left(\frac{x}{2}\right)^{3}+\frac{1}{2!3!}\left(\frac{x}{2}\right)^{5} \cdots\right. \\
&=\frac{x^{2}}{2}-\frac{x^{4}}{2^{4}}+\frac{x^{6}}{2^{6} \cdot 6} \cdots \\
& \frac{d}{d x}\left(x J_{1}(x)\right)=x-\frac{x^{3}}{2^{2}}+\frac{x^{5}}{2^{6}} \cdots \\
&=x\left[1-\frac{x^{2}}{2^{2}}+\frac{x^{4}}{2^{6}} \cdots\right] \\
&=x J_{0}(x) \\
&=x J_{0}(x) \\
& \frac{d}{d x}\left[x \cdot J_{1}(x)\right]
\end{aligned}
$$

(Smart
Properties of Bessal function
Identifies and the functions $J_{n+1 / 2}(x)$.
(ie), To find Bessal function $J_{n+1 / 2}(n)$. Where n is an integer. Also find the values of $J_{3(2)}$ $J_{5 / 2}, J_{-3 / 2}, J_{-5 / 2}$

Sola.
we know That,

$$
\begin{align*}
& \frac{2 p}{x} J_{p}(x)=J_{p-1}(x)+J_{p+1}(x) \\
& J_{p+1}(x)=\frac{2 p}{x} J_{p}(x)-J_{p-1}(x) \tag{1}
\end{align*}
$$

Put $P=1 / 2$

$$
\begin{aligned}
J_{3 / 2}(x) & =\frac{2(1 / 2)}{x} J_{1 / 2}(x)-J_{-1 / 2}(x) \\
& =1 / x J_{1 / 2}(x)-J_{-1 / 2}(x) \\
& =\frac{1}{x} \sqrt{\frac{2}{\pi x}} \sin x-\sqrt{\frac{2}{\pi x}} \cos x \\
J_{3 / 2}(x) & =\sqrt{\frac{2}{\pi x}}[1 / x \sin x-\cos x]
\end{aligned}
$$

put $p=3 / 2$.

$$
\begin{aligned}
J_{5 / 2}(x) & =\frac{2(3 / 2)}{x} J_{3 / 2}(x)-J_{1 / 2}(x) \\
& =3 / x\left[\sqrt{\frac{2}{\pi x}}\left(1 / x^{\sin x-\cos x}\right)\right]-\sqrt{\frac{2}{\pi x}} \sin x \\
J_{5 / 2}(x) & =\sqrt{\frac{2}{\pi x}}\left[\frac{3 \sin x}{x^{2}}-\frac{3 \cos x}{x}-\sin x\right]
\end{aligned}
$$

Similarity if we put $P=5 / 2,7 / 2$, wee get $J_{-/ 2}, J_{q / 2}$

From (1),

$$
\begin{equation*}
I_{p-1}(x)=\frac{2 p}{x} J_{p}(x)-J_{p+1}(x) \tag{2}
\end{equation*}
$$

Put $P=-1 / 2$

$$
\begin{aligned}
J_{-3 / 2}(x) & \left.=\frac{-2\left(\frac{1}{2}\right)}{x} J_{-1 / 2}(x)-J_{(-1 / 2}+1\right)^{(x)} \\
& =-\frac{1}{x} J_{-1 / 2} x-J_{1 / 2}(x) \\
& =\frac{-1}{x} \sqrt{\frac{2}{\pi x}} \cos x-\sqrt{\frac{2}{\pi x}} \sin x \\
J_{-3 / 2}(x) & =-\sqrt{\frac{2}{\pi x}}\left[\frac{1}{x}\{\cos x+\sin x]\right.
\end{aligned}
$$

put $p=-3 / 2$

$$
\begin{aligned}
& J_{-\frac{5}{2}}(x)=\frac{2(-3 / 2)}{x} J_{-\frac{3}{2}}(x)-J_{\left(-\frac{3}{2}+1\right)}(x) \\
&=\frac{-3}{x} J_{-\frac{3}{2}}(x)-J_{-1 / 2}(x) \\
&=\frac{-3}{x}\left[\frac{-2}{\pi x}\left(\frac{1}{x} \cos x+\sin x\right)\right] \\
&-\sqrt{\frac{2}{\pi x}} \cos x
\end{aligned}
$$

$$
J_{-\frac{5}{2}}(x)=\sqrt{\frac{2}{\pi x}}\left[\frac{3 \cos x}{x^{2}}+\frac{3 \sin x}{x}-\cos x\right]
$$

Similarly we put $T=-5 / 2,-7 / 2, \ldots$. we get $J_{-\frac{7}{2}}, J_{-\frac{9}{2}}$.

Hence every Bessals function $I_{n+1}(x)$ where n is any integer Can the determined.
1.) prove that

QQ. (a) $\frac{d}{d x}\left[x^{P} J_{p}(x)\right]=x^{P} \cdot J_{p-1}(x)$
(b) $\frac{d}{d x}\left[x^{-p} J_{p}(x)\right]=-x^{-p} \cdot J_{p+1}(x)$.

Sols.
W.K.T $J_{p}(x)=\frac{\sum_{n=0}^{\infty}(-1)^{n}\left(\frac{x}{2}\right)^{2 n+p}}{n!(p+n)!}$

$$
\begin{aligned}
x^{p} F_{p}(x) & =x^{p} \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+p}}{2^{2 n+p} \cdot n!(p+n)!} \\
& =\sum_{r=0}^{\infty} \frac{\Leftrightarrow)^{n} x^{2 n+2 p}}{2^{2 n+p} \cdot n!(p+n)!}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d}{d x}\left[x^{p} J_{p}(x)\right]=\sum_{n=0}^{\infty} \frac{(-1)^{n} 2 n+2 p x^{2 n+2 p-1}}{2^{2 n+1} n!(p+n)!} \\
&=\sum_{n=0}^{\infty} \frac{(-1)^{n} 2(n+p) x^{2 n+2 p-1}}{2^{2 n+p} n!(p+1)(p+n-1)!} \\
&=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+2 p-1}}{2^{2 n+p-1} n!(p+n-1)!} \\
&=x^{p} \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+p-1}}{2^{2 n+p-1} n!(p+n-1)!} \\
&=x^{p} J_{p-1}(x) \\
& \frac{d}{d x}\left[x^{p} J_{p}(x)\right]=x^{p} \cdot J_{p-1}(x)
\end{aligned}
$$

(b) $\frac{d}{d x}\left[x^{-P} J_{p}(x)\right]=-x^{-P} J_{p+1}(x)$

Soln:
w.ks,

$$
\begin{aligned}
& J_{p}(x)=\frac{\sum_{n=0}^{\infty}(-1)^{n}\left(\frac{x}{2}\right)^{2 n+p}}{n!(p+n)!} \\
& =\frac{x^{-p} \sum_{n=0}^{\infty}(-1)^{n}\left(\frac{x}{2}\right)^{2 n+p}}{n!(p+n)!} \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{2^{2 n+p} n!(p+n)!}
\end{aligned}
$$

$$
x^{-p} J_{p}(x)=\frac{x^{-p} \sum_{n=0}^{\infty}(-1)^{n}\left(\frac{x}{2}\right)^{2 n+p}}{n!(p+n)!}
$$

$$
\begin{aligned}
& \frac{d}{d n}\left[x^{-p} J_{p}(x)\right]=\sum_{n=0}^{\infty} \frac{(-1)^{n} 2 n \cdot x^{2 n-1}}{2^{2 n+p} n(n-1)!(p+n)!} \\
&=\frac{\sum_{n=0}^{\infty}(-1)^{n} x^{2 n-1}}{2^{2 n+p-1}(n-1)!(p+n)!} \\
&=x^{-p} \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+p-1}}{2^{2 n+p-1}(n-1)!(p+n)!} \\
&=-x^{-p} \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+p-1}}{2^{2 n+p-1}(n-1)!(p+n-1+1)!} \\
&=-x^{-p} \sum_{n=0}^{\infty}(-1)^{n}\left(\frac{x}{2}\right)^{2 n+p-1+1-1} \\
&=-x^{-p} \sum_{n=0}^{\infty}(-1)^{n}\left(\frac{x}{2}\right)^{2 n+p+1} \\
& n!(n+p+1)! \\
&=-x^{-p} J_{p+1}^{(n-1)!(n-1+p+1)!} \\
& \frac{d x}{d x}\left[x^{-p} J_{p}(x)\right]=-x^{-p} J_{p+1}^{(x)} 4!
\end{aligned}
$$

(2) Prove That
(a) $2 J_{p}^{\prime}(x)=J_{p-1}(x)-J_{p+1}(x)$
(b) $\frac{2 p}{x} J_{p}(x)=J_{p-1}(x)+J_{p+1}(x)$
thence derived

$$
I_{p}^{\prime}(x)+\frac{p}{x} J_{p}(x)=J_{p-1}(x)
$$

Soln.
$w \cdot k \pi \frac{d}{d x}\left[x^{p} J_{p}(x)\right]=x^{p} J_{p-1}(x)$

$$
\begin{equation*}
x^{p} \cdot J_{p}(x)+J_{p}(x) P_{x^{p-1}}=x^{P} J_{p-1}(x) \tag{1}
\end{equation*}
$$

$w \cdot k \cdot T, \quad \frac{d}{d x}\left[x^{-p} J_{p}(x)\right]=-x^{-p} J_{p+1}(x)$

$$
x^{-p} J_{p}^{\prime}(x)+J_{p}(x)(-p) x^{-p-1}=-x^{-p} J_{p+1}(x)
$$

$$
\begin{equation*}
x^{-p} J_{p}^{\prime}(x)-J_{p}(x) p x^{-p-1}=-x^{-p} J_{p+1}(x) . \tag{2}
\end{equation*}
$$

$$
\begin{align*}
& \text { (1) } \div x^{p} \\
& \quad J_{p}^{\prime}(x)+J_{p}(x) p_{x^{-1}}=J_{p-1}(x) . \tag{3}\\
& \text { (2) } \div x^{-p} \\
& \quad J_{p}^{\prime}(x)-J_{p}(x) p_{x^{-1}}=-J_{p+1}(x) \tag{1}
\end{align*}
$$

$$
\begin{align*}
& \text { (3) }+(14) \\
& 2 I_{p}^{\prime}(x)=J_{p-1}(x)-I_{p+1}(x) \rightarrow \tag{5}\\
& \text { (3) }-(f) \Rightarrow \\
& 2 J_{p}^{\prime}(x) p x^{-1}=J_{p-1}(x)+J_{p+1}(x) \\
& (i-e) \quad 2 J_{p}(x) \frac{p}{x}=J_{p-1}(x)+J_{(p+1)}(x) \tag{6}\\
& \text { (5) }+(6) \\
& 2 J_{p}^{\prime}(x)+2 J_{p}(x) \frac{p}{x}=2 J_{p-1}(x) . \\
& 2\left[J_{p}^{\prime}(x)+\frac{p}{x} J_{p}(x)\right]=2 J_{p-1}(x) \\
& J_{p}^{\prime}(x)+\frac{p}{x} J_{p}(x)=J_{p-1}(x)
\end{align*}
$$

Orthoganal property of Bessal functions.

$$
\begin{aligned}
& \text { prove that } \\
& \int_{0}^{1} x J_{p}\left(\lambda_{m}(x)\right) J_{p}\left(\lambda_{n}(x)\right) d x= \begin{cases}0 & \text { if } m \neq n \\
\frac{1}{2} J_{p+1}\left(\lambda_{n}\right)^{2} \\
\text { if } m=n\end{cases}
\end{aligned}
$$

proot.
$y=I_{p}(x)$ is a soln of a Bessal equation

$$
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-p^{2}\right) y=0
$$

$$
\begin{equation*}
4^{\prime \prime}+\frac{41}{x}+\left(1+\frac{p^{2}}{x^{2}}\right) y=0 \tag{1}
\end{equation*}
$$

If a and b are distinct constant it follows that the function

$$
\begin{align*}
& u(x)=I_{p}(a x) \text { and } \\
& V(x)=I_{p}(b x) \text { soctistifies (1) } \\
& u^{\prime \prime}+\frac{1}{x} u^{\prime}+\left(a^{2}-\frac{p^{2}}{x^{2}}\right) u=0 \longrightarrow \text { (2) } \\
& v^{\prime \prime}+\frac{1}{x} v^{\prime}+\left(b^{2}-\frac{p^{2}}{x^{2}}\right) v=0 \tag{3}\\
& \text { (2) } x v \Rightarrow u^{\prime \prime} v+\frac{1}{x} u^{\prime} v+\left(a^{2}-\frac{p^{2}}{x^{2}}\right) u v=0 \rightarrow(0) \\
& \text { (3) } x u \Rightarrow u v^{\prime \prime}+\frac{1}{x} u v^{\prime}+\left(b^{2}-\frac{p^{2}}{x^{2}}\right) u v=0 \rightarrow \text { (5) } \\
& \text { (40) - (5) } \\
& \Rightarrow u^{\prime \prime} v+\frac{1}{x} u^{\prime} v+a^{2} u v-\frac{p^{2}}{x^{2}} u v \\
& \text { 接 }-v^{\prime \prime} u-\frac{1}{x} v^{\prime} u-b^{2} u v+\frac{\beta 2}{x^{2}} u v=0 \\
& \left(u^{\prime \prime} v-v^{\prime \prime} u\right)+\frac{1}{x}\left(u^{\prime} v-v^{\prime} u\right)+u v\left(a^{2}-b^{2}\right)=0 \\
& \frac{d}{d x}\left(u^{\prime} v-v^{\prime} u\right)+\frac{1}{x}\left(u^{\prime} v-v^{\prime} u\right)+u v\left(a^{2}-b^{2}\right)=0
\end{align*}
$$

$$
\begin{aligned}
& x \frac{d}{d x}\left(u^{\prime} v-v^{\prime} u\right)+u^{\prime} v-v^{\prime} u- \\
& x\left(b^{2}-a^{2}\right) u v^{2}=0 . \\
& \frac{d}{d x} x\left(u^{\prime} v-v^{\prime} u\right)+\left(u^{\prime} v-v^{\prime} u\right)=x\left(b^{2}-a^{2}\right) u v \\
& \frac{d}{d x}\left[x\left(u^{\prime} v-v^{\prime} u\right)\right]=x\left(b^{2}-a^{2}\right) u v
\end{aligned}
$$

Integrating with respect to x from θ to 1 .

$$
\left[x\left(u^{\prime} v-v^{\prime} u\right)\right]_{0}^{1}=\left(b^{2}-a^{2}\right) \int_{0}^{1} x u v d x
$$

The expression in brackets at $\quad x=0$.

$$
\begin{array}{ll}
u(x)=J_{p}(a x), & v(x)=J_{p}(b x) \\
u(1)=J_{p}(a), & v(1)=J_{p}(b)
\end{array}
$$

\therefore The integral part is 0 if a and b are distinct positive zero of λ_{m} and λ_{n} of $J_{p}(x)$.

$$
\int_{0}^{1} x \operatorname{tp}_{p}\left(\lambda_{m}(x)\right) \operatorname{tp}\left(\lambda_{n} x\right) d x=0 \text { if } m \neq n \text {. }
$$

when $m=n$
(2)

$$
\begin{aligned}
X=x^{2} u^{\prime} & \Rightarrow u^{\prime \prime}\left(2 x^{2} u^{\prime}\right)+\frac{1}{x} u^{\prime}\left(2 x^{2} u^{\prime}\right) \\
& +\left(a^{2}-\frac{P^{2}}{x^{2}}\right) u\left(2 x^{2} u^{\prime}\right)=0
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow 2 x^{2} u^{\prime} u^{\prime \prime}+2 x\left(u^{\prime}\right)^{2}+\left(\frac{a^{2} x^{2}-p^{2}}{x^{2}}\right) \\
& "\left(2 x^{2} u 4\right)=0 \text {. } \\
& \Rightarrow 2 x^{2} u^{\prime} u^{\prime \prime}+2 x\left(u^{\prime}\right)^{2}+\left(a^{2} x^{2}-p^{2}\right) 2 u u^{\prime}=0 \\
& 2 x^{2} u^{\prime} u^{\prime \prime}+2 x\left(u^{\prime}\right)^{2}+a^{2} x^{2} 2 u u^{\prime}-2 p^{2} u u^{\prime} \\
& +2 a^{2} x u^{2}-2 a^{2} x u^{2}=0 \text {. } \\
& \frac{d}{d x}\left(x^{2}\left(u^{\prime}\right)^{2}\right)+\frac{d}{d x}\left(a^{2} x^{2} u^{2}\right)-2 a^{2} x u^{2} \\
& -\frac{d}{d x}\left(p^{2} u^{2}\right)=0 . \\
& \left(\because \frac{d}{d x}\left(a^{2} x^{2} u^{2}\right)=a^{2} x^{2}(2 u) u^{\prime}+a^{2} 2 x \cdot u^{2}\right) \\
& \frac{d}{d x}\left[x^{2}\left(u^{1}\right)^{2}+a^{2} x^{2} u^{2}-p^{2} u^{2}\right]=2 a^{2} x u^{2} \\
& \text { Integrating from } 0 \text { to } 1 \text {. } \\
& {\left[x^{2}\left(u^{1}\right)^{2}+a^{2} x^{2} u^{2}-p^{2} u^{2}\right]_{0}^{1}=2 a^{2} \int_{0}^{1} x u^{2} d x} \\
& u(x)=J_{p}(a x) \Leftrightarrow \omega^{\prime}(x)=J_{p}^{\prime}(a x) a \\
& u(1)=\operatorname{Jp}_{p}(a) \Rightarrow u^{\prime}(1)=J_{p}^{\prime}(a) a \\
& \text { (6. }-)(1)^{2}\left(u^{\prime}(1)\right)^{2}+a^{2}(1)^{2}(u(1))^{2} \times p^{2}(u(1))^{2} \\
& \left.-(b)+(0)-p^{2}(u(0))^{2}\right]=2 a^{2} \int_{0}^{1} x u^{2} d x
\end{aligned}
$$

$$
\begin{aligned}
& {\left[u^{\prime}(1)+a^{2}(u(1))^{2}-p^{2}(u(1))^{2}-p^{2}(0)\right]} \\
& =2 a^{2} \int_{0}^{1} x u^{2} d x \\
& \begin{array}{r}
\int_{0}^{1} x u^{2} d x=\frac{1}{2 a^{2}} a^{2} J_{p}^{1}(a)^{2}+\frac{a^{2}}{2 a^{2}} J_{p}\left(a^{2}\right) \\
-\frac{p^{2}}{2 a^{2}} J_{p}(a)^{2}=\frac{1}{2} J_{p}^{\prime}(a)^{2}+\frac{1}{2} J_{p}\left(a^{2}\right) \\
-\frac{p^{2}}{2 a^{2}} J_{p}(a)^{2}
\end{array} \\
& \begin{array}{r}
\int_{0}^{1} x J_{p}(a x)^{2} d x=\frac{1}{2} J_{p}^{\prime}(a)^{2}+\frac{1}{2} J_{p}(a)^{2}\left(1-\frac{p^{2}}{a^{2}}\right)
\end{array}
\end{aligned}
$$

put $a=\lambda n$ ne get

$$
\begin{aligned}
& \int_{0}^{1} x J_{p}\left(\lambda_{n} x\right)^{2} d x=\frac{1}{2} J_{p}^{\prime}(\lambda n)^{2}+J_{p}(\lambda n)^{2}\left(1-\frac{p^{2}}{(\lambda n)^{2}}\right) \\
& J_{p}^{\prime}(x)-\frac{p}{x} J_{p}(x)=J_{p+1}(x) \quad\left(p_{n+} J_{x}=(\lambda n)^{2}\right) \\
& J_{p}+(x)=\frac{2 p}{x} J_{p}^{\prime}(\lambda n)^{2}-\frac{p}{(\lambda n)^{2}} \cdot J_{p}(\lambda n)^{2}=J_{p+1}(\lambda n)^{2} \\
& J_{p} \rightarrow-J_{n}\left(\lambda^{\prime 2}\right.
\end{aligned}
$$

($\because=$ in is zero of Bessal function)

$$
\begin{array}{r}
\int_{0}^{1} x J_{p}^{\prime}\left(\lambda_{n} x\right)^{2} d x=\frac{1}{2} J_{p}^{\prime}\left(\lambda_{n}\right)^{2} \quad[\text { by }(0)] \\
=\frac{1}{2} J_{p+1}(\lambda n)^{2} \quad \text { if } m=n
\end{array}
$$

$$
\begin{aligned}
\int_{0}^{1} x \operatorname{Tr}(\lambda n x) & \operatorname{Tr}(\lambda m x) d x \\
& = \begin{cases}0 & \text { if } m \neq n \\
1 / 2 J_{p+1}(\lambda m)^{2} & \text { is } m=n\end{cases}
\end{aligned}
$$

80^{0} Problem
Express $J_{2}(x), J_{3}(x)$ and $J_{H}(x)$ in terms of $J_{0}(x)$ and $J_{1}(x)$

Sols.
$\omega \cdot k \pi$,

$$
J_{p+1}(x)=\frac{2 p}{x} J_{p}(x)+J_{p-1}(x)
$$

Put $p=1$

$$
J_{2}(x)=\frac{2}{x} J_{1}(x)-J_{0}(x)
$$

put $p=2$,

$$
\begin{aligned}
J_{3}(x) & =\frac{4}{x} J_{2}(x)-J_{1}(x) \\
& =\frac{4}{x}\left[\frac{2}{x} J_{1}(x)-J_{0}(x)\right]-J_{1}(x) \\
& =\frac{8}{x^{2}} J_{1}(x)-\frac{4}{x} J_{0}(x)-J_{1}(x) \\
J_{3}(x) & =J_{1}(x)\left[\frac{8}{x^{2}}-1\right]-\frac{4}{x} J_{0}(x)
\end{aligned}
$$

put $p=3$

$$
\begin{aligned}
& J_{H}(x)= \frac{6}{x} J_{3}(x)-J_{2}(x) \\
&= \frac{6}{x}\left[J_{1}(x)\left(\frac{8}{x^{2}}-1\right)-\frac{4}{x} J_{0}(x)\right] \\
& \quad\left[\frac{2}{x} J_{1}(x)-J_{0}(x)\right] \\
&=\frac{48}{x^{3}} J_{1}(x)-\frac{6}{x} J_{1}(x)-\frac{24}{x} J_{0}(x) \\
&-2 / J_{1}(x)-J_{0}(x) \\
& J_{H}(x)=J_{1}(x)\left[\frac{48}{x^{8}}-\frac{6}{x}-\frac{2}{x}\right]+J_{0}(x)\left[1-\frac{24}{x^{2}}\right] \\
& J_{H}(x)=J_{1}(x)\left[\frac{x_{1} 8}{x^{3}}-\frac{8}{x}\right]+J_{0}(x)\left[1-\frac{24}{x^{2}}\right]
\end{aligned}
$$

Problem
If $f(x)$ is defined by

$$
f(x)=\left\{\begin{array}{cc}
1 & 0 \leq x<1 / 2 \\
1 / 2 & x=1 / 2 \\
0 & 1 / 2<x \leq 1
\end{array}\right.
$$

Such that $f(x)=\sum_{n=1}^{\infty} \frac{J_{1}\left(\lambda_{n} / 2\right)}{\lambda_{n} J_{1}\left(\lambda_{n}\right)^{2}} J_{0}\left(\lambda_{n}(x)\right)$
Sols:
The Bessel Series function is
given by $f(x)=\sum_{n=1}^{\infty} a_{n} J_{p}\left(A_{n}(x)\right)$
where,

$$
a_{n}=\frac{2}{\tan _{1}\left(x_{n}\right)^{2}} \int_{0}^{1} x f(x) \operatorname{Ip}_{p}(\operatorname{Tr}(x)) d x
$$

put $p=0$.

$$
f(n)=\sum_{n=1}^{\infty} a_{n} T_{0}\left(\partial_{n}(n)\right)
$$

whee $a_{n}=\frac{2}{I_{1}\left(x_{n}\right)=} \int_{0}^{1} x f(x) y_{0}(\partial x x) d x$

$$
\begin{aligned}
& a_{n}=\frac{2}{y_{1}\left(2 x^{2}=\left[\int_{0}^{y_{2}} x J_{0}(\ln (x)) d x+\int_{1 / 2}^{1} d x\right]\right.} \\
& =\frac{2}{J_{1}(x x)^{2}} \int_{0}^{y_{2}} x J_{0} \partial x(x) d x \text {. } \\
& =\frac{2}{J_{1}\left(\lambda_{n}\right)^{2}}\left[\frac{1}{\lambda n} x J_{i}\left(\lambda_{n}(x)\right)\right]_{0}^{\frac{6}{2}} \\
& =\frac{2}{J_{1}(\lambda n)^{2}-\lambda_{n}}\left[x y_{1} \partial n(x)\right]_{0}^{1 / 2} \\
& =\frac{2}{J_{0}(2 n)^{2} \cdot \partial n}\left[1 / 2 J_{1} \cdot \lambda n(16)\right] \\
& =\frac{1}{\lambda_{n} J_{1}(\lambda n)^{2}} J_{1}(\lambda n / 2)
\end{aligned}
$$

$$
\begin{gathered}
a_{n}=\frac{J_{1}(\lambda n / 2)}{\lambda_{n} J_{1}\left(\lambda_{n}\right)^{2}} \\
\text { (1) }=S f(x)=\sum_{n=1}^{\infty} \frac{J_{1}\left(\lambda_{n} / 2\right)}{\lambda_{n}\left(J_{1}\right)\left(\partial_{n}\right)^{2}} J_{0}\left(\lambda_{n} x\right) \\
f(x)=\sum_{n=1}^{\infty} \frac{J_{1}\left(\partial_{n} / 2\right)}{\lambda_{n} J_{1}\left(\lambda_{n}\right)^{2}} J_{0}\left(\partial_{n}(x)\right.
\end{gathered}
$$

Grit. V

Procedure to Solve Aon_homogenous - linear System

Consider the non-homogenous linear System

$$
\left.\begin{array}{l}
\frac{d x}{d t}=a_{1}(t) x+b_{1}(t) y+f_{1}(t) \tag{1}\\
\frac{d y}{d t}=a_{2}(t) x+b_{2}(t) y+f_{2}(t)
\end{array}\right\}
$$

If $f_{1}(t)$ and $f_{2}(t)$ are identically zero.

Then the system (1) is called homogenous. Otherwise it is Said to be ron-homagenous. The corresponding homegenous system is

$$
\begin{aligned}
& \frac{d x}{d t}=a_{1}(t) x+b_{1}(t) y \text { and } \\
& \frac{d y}{d t}=a_{2}(t) x+b_{2}(t) y
\end{aligned}
$$

If the homogeneous system has tue Solutions.

$$
\left\{\begin{array} { l }
{ x = x _ { 1 } (t) } \\
{ y = y _ { 1 } (t) }
\end{array} \text { and } \left\{\begin{array}{l}
x=x_{2}(t) \\
y=y_{2}(t)
\end{array} \text { on }[a, b]\right.\right.
$$

Then $\left\{x=c_{1} x_{1}(t)+c_{2} x_{2}(t)\right.$ is also
a solution on [a,b] for any constants c_{1} and c_{2}

Now $x=v_{1}(t) x_{1}(t)+v_{2}(t) x_{2}(t)$ and

$$
y=v_{1}(t) y_{1}(t)+v_{2}(t) y_{2}(t)
$$

is a particular solution of (1):
If the function $v_{1}(t)$ and $v_{2}(t)$ satisfies the system

$$
\begin{aligned}
& v_{1}^{\prime}\left(x_{1}\right)+v_{2}^{\prime}\left(x_{2}\right)=f_{1} \\
& v_{1}^{\prime}\left(y_{1}\right)+v_{2}^{\prime}\left(y_{2}\right)=f_{2}
\end{aligned}
$$

Theorem: A

If to is any point of the [a,b] and if x_{0} and y_{0} are any number what ever, then

$$
\left.\begin{array}{l}
\frac{d x}{d t}=a_{1}(t) x+b_{1}(x) y+f_{1}(t) \\
\frac{d y}{d t}=a_{2}(t) x+b_{2}(x) y+f_{2}(t)
\end{array}\right\} \text { Las }
$$

one and only solution $\left\{\begin{array}{l}x=x(t) \\ y=y(t)\end{array}\right\}$
valid throughout $[a, b]$. such that

$$
x\left(t_{0}\right)=\text { and } y\left(t_{0}\right)=y_{0} \text {. }
$$

Theorem: B
If the homogenous system

$$
\begin{aligned}
& \left\{\begin{array}{l}
\frac{d x}{d t}=a_{1}(t)+b_{1}(t) y \\
\frac{d y}{d t}=a_{2}(t) x+b_{2}(t) y
\end{array}\right. \text { Las two soln } \\
& \left\{\begin{array} { l }
{ x = x _ { 1 } (t) } \\
{ y = y _ { 1 } (t) }
\end{array} \text { and } \left\{\begin{array}{l}
x=x_{2}(t) \\
y=y_{2}(t)
\end{array} \text { on }[a, b]\right.\right.
\end{aligned}
$$

Then

$$
\left\{\begin{array}{l}
x=c_{1} x_{1}(1)+c_{2}\left(x_{3}\right) t \\
y=c_{1}\left(y_{1}\right) t+c_{2}\left(y_{2}\right) t
\end{array}\right.
$$

Solution on [x,b] for any consternds c_{1} and c_{0}
proof:-
Given the homegenoves system

$$
\left.\begin{array}{l}
\frac{d x}{d t}=a_{1}(t) x+b_{1}(t) y \\
\frac{d y}{d t}=a_{2}(t) x+b_{2}(t) y
\end{array}\right\}
$$

Laving the two solutions ave,

$$
\left.\left.\begin{array}{ll}
x=x_{1}(t) \\
y=y_{1}(t)
\end{array}\right\} \text { and } \begin{array}{l}
x=x_{2}(t) \\
y=y_{2}(t)
\end{array}\right\} \text { on }[a, b]
$$

Since $x,(t)$ and $4,(t)$ are Solutions of (a)

$$
\left.\begin{array}{l}
\frac{d x_{1}}{d t}=a_{1}(t) x_{1}+b_{1}(t) y_{1} \tag{5}\\
\frac{d s_{1}}{d t}=a_{2}(t) x_{1}+b_{2}(t) y_{1}
\end{array}\right\}
$$

Since $x_{2}(t)$ and $y_{2}(t)$ are Solutions of (0).

$$
\left.\begin{array}{l}
\frac{d x_{2}}{d t}=a_{1}(t) x_{2}+b_{1}(t) y_{1} \tag{3}\\
\frac{d y_{2}}{d t}=a_{2}(t) x_{2}+b_{2}(t) y_{2}
\end{array}\right\}
$$

Equation (2) is multiple by
C_{1} and eqn (3) multiple by C_{2}.

$$
\left.\begin{array}{rl}
\text { (2) } x c_{1} \Rightarrow & c_{1} \cdot \frac{d x_{1}}{d t}=c_{1} a_{1} x_{1}+c_{1} b_{1} y, \\
& c_{1} \cdot \frac{d y_{1}}{d t}=c_{1} a_{2} x_{1}+c_{2} b_{2} u_{1}
\end{array}\right\} \rightarrow \text { (4) }
$$

then adding (10) and (5)

$$
\begin{aligned}
& \text { c. } \frac{d x_{1}}{d t}+c_{2} \cdot \frac{d x_{2}}{d t}=c_{1} a_{1} x_{1}+c_{1} b_{1} y_{1} \\
&+c_{2} a_{1} x_{2}+c_{2} b_{1} y_{2}
\end{aligned}
$$

$$
\begin{align*}
\frac{d}{d t}\left(c_{1} x_{1}+c_{2} x_{2}\right)= & a_{1}\left(x_{1} c_{1}+x_{2} c_{2}\right) \\
& +h_{1}\left(c_{1} u_{1}+c_{2} y_{2}\right)
\end{align*}
$$

Similarly,

$$
\begin{align*}
\frac{d}{d t}\left(c_{1} y_{1}+c_{2} y_{2}\right) & =a_{1}\left(y_{1} c_{1}+y_{2} c_{2}\right) \\
& +b_{1}\left(c_{1} x_{1}+c_{2} x_{2}\right)
\end{align*}
$$

from (6) and (7),

$$
\left\{\begin{array}{l}
x=c_{1} x_{1}(t)+c_{2} x_{2}(t) \\
y=c_{1} y_{1}(t)+c_{2} y_{2}(t)
\end{array}\right.
$$

Theorem: C
If, two solutions

$$
\begin{aligned}
& x=x_{1}(t) \\
& y=y_{1}(t)
\end{aligned} \text { and } \begin{aligned}
& x=x_{2}(t) \\
& y=y_{2}(t)
\end{aligned} \text { of the }
$$

homogenous system

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=a_{1}(t) x+b_{1}(t) y \\
\frac{d y}{d t}=a_{2}(t) x+b_{2}(t) y
\end{array}\right.
$$

Lave a wronskian $\omega(t)$ that does not vanish on [a,b]. Then

$$
\left\{\begin{array}{l}
x=c_{1} x_{1}(t)+c_{2} x_{2}(t) \\
y=c_{1} y_{1}(t)+c_{2} y_{2}(t)
\end{array}\right. \text { is the general }
$$

Solutions of homogenous system.
Proof:-
Given the homogenous system

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=a_{1}(t) x+b_{1}(t) y \\
\frac{d y}{d t}=a_{2}(t) x+b_{2}(t) y
\end{array}\right.
$$

fave a wronskian does not vanish [ai]

$$
\begin{aligned}
& \text { vanish [a,b] } w(t)=\left|\begin{array}{ll}
x_{1}(t) & x_{2}(t) \\
y_{1}(t) & y_{2}(t)
\end{array}\right| \neq 0 \\
& \therefore x_{1}(t), x_{2}(t), y_{1}(t), y_{2}(t) \text { are }
\end{aligned}
$$

linearly independent ow whit ion Then by Theorem B,

$$
\begin{aligned}
& x=c_{1} x_{1}(t)+c_{2} x_{2}(t) \\
& y=c_{1} y_{1}(t)+c_{2} y_{2}(t)
\end{aligned}
$$

general solutions of the homogenous system.

Theorem: D
If $\omega(t)$ is the wranskian of the two solutions
$x=x,(t)\}$ (1) and $x=x_{2}(t)$ of $y=y_{2}(t)$
the homogeneous system.

$$
\left.\begin{array}{l}
\frac{d x}{d t}=a_{1}(t) x+b_{1}(t) y \tag{2}\\
\frac{d y}{d t}=a_{2}(t) x+b_{2}(t) y
\end{array}\right\}
$$

then $\omega(t)$ is either identically zero of no wharve zero on $[a, b]$. proof:-

The wronskian of two solutions of (1) is

$$
\begin{aligned}
& \omega(t)=\left|\begin{array}{ll}
x_{1}(t) & x_{2}(t) \\
y_{1}(t) & y_{2}(t)
\end{array}\right|=x_{1} y_{2}-x_{2} y_{1} \\
& \omega^{\prime}=x_{1} y_{2}^{\prime}+x_{1}^{\prime} y_{2}-x_{2} y_{1}^{\prime}-x_{2}^{\prime} y_{1}
\end{aligned}
$$

Since equation (c) is solution of homogenous systom (2)

$$
\begin{align*}
& \frac{d x_{1}}{d t}=a_{1}(t) x_{1}+b_{1}(t) y_{1} \rightarrow(3) \text { and } \\
& \frac{d y_{1}}{d t}=a_{2}(t) x_{1}+b_{2}(t) y_{1} \rightarrow \text { (t) } \tag{H}\\
& \frac{d x_{2}}{d t}=a_{1}(t) x_{2}+b_{1}(t) y_{2} \rightarrow \text { (6) } \tag{2}\\
& \frac{d y_{2}}{d t}=a_{2}(t) x_{2}+b_{2}(t) y_{2} \rightarrow(7) \tag{6}\\
& \text { (B) } \times y_{2} \tag{7}\\
& \text { (1t) } \times x_{2} \Rightarrow y_{2} \cdot \frac{d x_{1}}{d t}=a_{1} x_{1} y_{2}+b_{1} y_{1} y_{2} \rightarrow x_{2} \cdot \frac{d y_{1}}{d t}=a_{2} x_{1} x_{2}+b_{2} y_{1} x_{2} \rightarrow \text { (8) } \tag{8}\\
& \text { (5) } \times y_{1} \Rightarrow y_{1} \cdot \frac{d x_{2}}{d t}=a_{1} x_{2} y_{1}+b_{1} y_{2} y_{1} \rightarrow \text { (9) } \tag{9}\\
& \text { (b) } \times x_{1} \Rightarrow x_{1} \cdot \frac{d y_{2}}{d t}=a_{2} x_{2} x_{1}+b_{2} y_{2} x_{1} \rightarrow \text { (t) }
\end{align*}
$$

(10) +7

$$
\begin{aligned}
& x_{1} \cdot \frac{d y_{2}}{d t}+y_{2} \frac{d x_{1}}{d t}=a_{2} x_{2} x_{1}+b_{2} u_{2} x_{1} \\
& +a_{1} x_{1} y_{2}+b_{1} y_{1} y_{2} \\
& x_{1} \frac{d y_{2}}{d t}+y_{2} \cdot \frac{d x_{1}}{d t}-x_{2} \frac{d y_{1}}{d t}-y_{1} \frac{d x_{2}}{d t} \\
& =a_{2} x_{2} x_{1}+b_{2} x_{1} x_{2}+a_{1} x_{1} y_{2}+b_{1} y_{1} y_{2} \\
& -a_{2} x_{1} x_{2}-b_{2} y_{1} x_{2}-a_{1} x_{2} y_{1}+ \\
& b_{1} y_{2} y_{1} \\
& \frac{d}{d t}\left(x_{1} y_{2}-x_{2} y_{1}\right)=b_{2} x_{1} x_{2}+a_{1} x_{1} y_{2} \\
& -a_{1} x_{2} x_{1}-b_{1} y_{2} y_{1} \\
& =x_{1} 4_{2}\left(b_{2}+a_{1}\right)-4_{1} x_{2}\left(b_{2}+a_{1}\right) \\
& \frac{d}{d t}\left(x_{1} y_{2}-x_{2} y_{1}\right)=x_{1} y_{2}\left(b_{2}+a_{1}\right)- \\
& x_{2} 4_{1}\left(b_{2}+a_{1}\right) \\
& \frac{d \omega}{d t}=\left(b_{2}+a_{1}\right)\left(x_{1} y_{2}-x_{2} y_{1}\right) \\
& \frac{d \omega}{d t}=\left(b_{2}+a_{1}\right)(\omega)
\end{aligned}
$$

$$
\begin{aligned}
\frac{d \omega}{\omega} & =\left(b_{2}+a_{1}\right) d t \\
\int \frac{d \omega}{\omega} & =\int\left(b_{2}+a_{1}\right) d t+c \\
\log \omega & =\int\left(b_{2}+a_{1}\right) d t+c \\
\omega & =e^{\int\left(b_{2}+a_{1}\right) d t}+e^{c} \\
\omega & =c \cdot e^{\int\left(b_{2}+a_{1}\right) d t}
\end{aligned}
$$

W.K.T,
the expontial function is never zero

If $C=0$ is wronskian is zero
If $c \neq 0$ is wronskian is not zeno fierce proved.

Theorem: E
Q.0 If the two solutions are $x=x_{1}(t)$ and

$$
y=y_{1}(t)
$$

$$
\left.\begin{array}{l}
x=x_{2}(t) \tag{1}\\
y=y_{2}(t)
\end{array}\right\}
$$

of the homogenous System

$$
\left.\begin{array}{l}
\frac{d x}{d t}=a_{1}(t) x+b_{1}(t) y \\
\frac{d y}{d t}=a_{2}(t) x+b_{2}(t) y
\end{array}\right\} \text { are linearly }
$$

-independent on $[a, b]$. Then
$\left.\begin{array}{l}x=c_{1} x_{1}(t)+c_{2} x_{2}(t) \\ y=c_{1} g_{1}(t)+c_{2} y_{2}(t)\end{array}\right\}$ is the general
solutions of the homogenous system on this interval.

Proof:
lemma:
The two solutions of (1) are linearly dependent iff their wronskian $\omega(t)$ is identically zero. Proof of Lemma:-

Assume that the two solutions are linearly dependent To prove $\quad \omega(t)=0$

$$
\begin{aligned}
& x_{1}(t)=k x_{2}(t) \\
& y_{1}(t)=k y_{2}(t)
\end{aligned}
$$

$$
\begin{aligned}
a(t) & =\left|\begin{array}{ll}
x_{1}(t) & x_{2}(t) \\
y_{1}(t) & y_{2}(t)
\end{array}\right| \\
& =\left|\begin{array}{ll}
k x_{2}(t) & x_{2}(t) \\
k y_{2}(t) & y_{2}(t)
\end{array}\right| \\
& =k x_{2}(t) y_{2}(t)-x_{2}(t) k y_{2}(t)=0 \\
\therefore \omega(t) & =0
\end{aligned}
$$

conversely,
Suppose $\omega(t)$ is identically zero

$$
\text { i.e) } \begin{aligned}
w(t) & =0 \\
w\left(x_{1}, x_{2}\right) & =\left|\begin{array}{ll}
x_{1}(t) & x_{2}(t) \\
x_{1}^{\prime}(t) & x_{2}^{\prime}(t)
\end{array}\right| \\
& =x_{1} x_{2}^{\prime}-x_{2} x_{1}^{\prime}
\end{aligned}
$$

Since $\omega=0, x_{1} x_{2}^{2}-x_{2} x_{1}^{\prime}=0$

$$
\begin{aligned}
& \frac{x_{1} x_{2}^{\prime}-x_{2} x_{1}^{\prime}}{x_{1}^{2}}=0 \\
& d\left(\frac{x_{1}}{x_{2}}\right)=0, \quad \frac{x_{1}}{x_{2}}=k
\end{aligned}
$$

$\therefore x_{1}$ and x_{2} are linearly dependent

By theorem D and lemma,
Hence the coma

Theorem: F
If the two solutions $x=x_{1}(t)$ and $x=x_{2}(t)$ of the $y=y_{1}(t) \quad y=y_{2}(t)$
homogenous system,

$$
\left.\begin{array}{l}
\frac{d y}{d t}=a_{1}(t) x+b_{1}(t) y \\
\frac{d y}{d t}=a_{2}(t) x+b_{2}(t) y
\end{array}\right\} \text { are }
$$

linearly independent on $[a, b]$ and

solutions of non-homogenous system.

$$
\left.\begin{array}{l}
\frac{d x}{d t}=a_{1}(t)+b_{1}(t)+f_{1}(t) \\
\frac{d y}{d t}=a_{2}(t)+b_{2}(t)+f_{2}(t)
\end{array}\right\} \text { Then }
$$

$$
\left.\begin{array}{l}
x=c_{1} x_{1}(t)+c_{2} x_{2}(t)+x_{p}(t) \\
y=c_{1} y_{1}(t)+c_{2} y_{x}(t)+y_{p}(t)
\end{array}\right\} \text { is a }
$$

general solution of non-hameqenous systom.

$$
\begin{aligned}
& \frac{d x}{d t}=a_{1}(t)+b_{1}(t) y+f_{1}(t) \\
& \frac{d y}{d t}=a_{2}(t)+b_{2}(t) y+f_{2}(t)
\end{aligned}
$$

proof:
Since (1) is a soln of (2)

$$
\left\{\begin{array}{l}
\frac{d x_{1}}{d t}=a_{1}(t) x+b_{1}(t) y_{1} \rightarrow(b) \text { and } \\
\frac{d y_{1}}{d t}=a_{2}(t) x_{1}+h_{2}(t) u_{1} \rightarrow(t) \\
\left\{\begin{array}{l}
\frac{d x_{2}}{d t}=a_{1}(t) x_{2}+b_{1}(t) u_{2} \rightarrow(8) \\
\frac{d y_{2}}{d t}=a_{2}(t) x_{2}+b_{2}(t) u_{2} \rightarrow \text { (9) }
\end{array}\right. \tag{9}
\end{array}\right.
$$

and

Since (3) is a soln ot (4)

$$
\left\{\begin{array}{l}
\frac{d x p}{d t}=a_{1}(t) x_{p}+b_{1}(t) y_{p}+f_{1}(t) \\
\frac{d y p}{d t}=a_{2}(t) x_{p}+b_{2}(t) y_{p}+f_{2}(t) \tag{II}
\end{array}\right.
$$

$$
\begin{align*}
& c_{1} \times(1) \Rightarrow c_{1} \frac{d x_{1}}{d t}=c_{1} a_{1} x_{1}+c_{1} b_{1} y_{1} \rightarrow(12) \\
& c_{1} \times(2) \Rightarrow c_{1} \frac{d y_{1}}{d t}=c_{2} a_{2} x_{1}+c_{2} b_{2} y_{1} \rightarrow \text { (13) } \\
& c_{2} \times(8) \Rightarrow c_{2} \cdot \frac{d x_{2}}{d t}=c_{2} a_{1} x_{2}+c_{2} b_{1} y_{2} \rightarrow \text { (14) } \tag{10}\\
& c_{2} \times(9) \Rightarrow c_{2} \cdot \frac{d y_{2}}{d t}=c_{2} a_{2} x_{2}+c_{2} b_{2} y_{2} \rightarrow \text { (15) } \tag{15}
\end{align*}
$$

$$
\begin{aligned}
& \text { (12) }+ \text { (181) }+ \text { (16) } \\
& \begin{aligned}
\frac{d}{d t}\left(c_{1} x_{1}\right. & \left.+c_{2} x_{2}+x_{p}\right)=c_{1} a_{1} x
\end{aligned}+c_{1} b_{1} y_{1}+c_{2} a_{1} x_{2} \\
& \\
& +c_{2} b_{1} y_{2}+a_{1} x_{p}+b_{1} y_{p} \\
& \\
& \\
& +f_{1}(1) \longrightarrow \text { (16) }
\end{aligned}
$$

(13) $+(15)+$ (11)

$$
\begin{aligned}
& \frac{d}{d t}\left(c_{1} y_{1}+c_{2} y_{2}+y_{p}\right)=c_{1} a_{2} x_{1}+c_{1} b_{2} y_{1}+c_{1} a_{2} x_{2} \\
&+c_{2} b_{2} u_{2}+a_{2} x_{p}+b_{2} y_{p} \\
&+f_{2}(L) \rightarrow \text { (IT }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (16) } \begin{aligned}
\Rightarrow \frac{d}{d t}\left(c_{1} x_{1}+c_{2} x_{2}+x_{p}\right)= & a_{1}\left(c_{1} x_{1}+c_{2} x_{2}+x_{p}\right) \\
& +b_{1}\left(c_{1} 4_{1}+c_{2} u_{2}+u_{p}\right)+f_{1}(t)
\end{aligned} \\
& \text { (17) } \begin{array}{r}
\text { (} \frac{d}{d t}\left(c_{1} 4_{1}+c_{2} u_{2}+u_{p}\right)= \\
+a_{2}\left(c_{1} x_{1}+c_{2} x_{2}+x_{p}\right) \\
\\
\left.+c_{1} 4_{1}+c_{2} u_{2}+4_{p}\right) \\
-f_{2}(t)
\end{array}
\end{aligned}
$$

then

$$
\left.\begin{array}{l}
x=c_{1} x_{1}(t)+c_{2} x_{2}(t)+x_{p}(t) \\
y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)
\end{array}\right\} \text { is }
$$

genaral soln at non homogenous System

$$
\left.\begin{array}{l}
\frac{d x}{d t}=a_{1}(t) x+b_{1}(t) y+f_{1}(t) \\
\frac{d y}{d t}=a_{2}(t) x+b_{2}(t) y+f_{2}(t)
\end{array}\right\}
$$

Elene the procot.

